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Preface

The subject of this book is distributed control, decision making and multi-agent sys-
tem with a mathematical treatise of relevant problems, an area of research prompted
by networked embedded systems and communications. The dynamics introduced by
computation and communication delays is one of the main reasons for the growing
complexity of large scale systems. Reliability, predictability and efficient utiliza-
tion of processing power and network resources are central issues. In areas where
it is possible to reason about composition of control components across networks,
new theory and design methodology are needed. Also, there is a need for advanced
software tools so one may analyze and simulate the complex interactions that arise
between controllers, plants and networks in distributed computer control systems.

Whereas most of control theory has been developed in a centralized setting with
hierarchical processing of measurements and control computation, this paradigm
has inherent limitations, sometimes overshadowing its conceptual advantages. In
fact, industrial practice often relies on distributed control structures, and there is a
strong need for more systematic approaches to the design of such structures and the
corresponding information interfaces.

Theory for coordination of many different units is closely related to economics and
game theory. A recent success is the development of a theory for congestion control
on the Internet, where the basic protocol (TCP) is understood in economic terms as
forcing computers to adjust their send rate based on prices reflecting the conges-
tion on the links that they are using. This theory has stimulated a more systematic
introduction of distributed principles for control and decision making not only in
computer networks but in large scale engineering systems as well. A source of inspi-
ration is the rich set of tools from convex optimization that have found widespread
use since the early 1990s. In this area, the concept of price mechanism appears nat-
urally in the form of Lagrange multipliers, and the method of dual decomposition
has a long history. In this book, a number of significant contributions are collected
to highlight these trends.

Jönsson develops primal and dual formulations of stability criteria based on multi-
pliers. The foundation for multiplier-based stability analysis is to provide for the use
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of a convex cone of multipliers to characterize the uncertainty in a system. Primal
and dual stability criteria are formulated as convex feasibility tests involving the
nominal dynamics and multipliers from the cone and the polar cone, respectively.
The motivation for introducing the dual is that it provides additional insight into the
stability criterion and is sometimes easier to use than the primal. The case consid-
ered in this chapter is one in which the uncertainty represents the interconnection of
a complex network. The multipliers are used to describe characteristic properties of
the network such as the spectral location or the structure of the underlying graph.

Swigart and Lall develop controller synthesis algorithms for decentralized control
problems. The particular system considered here consists of two interconnected lin-
ear subsystems, with communication allowed in only one direction. They develop
the concept of spectral factorization, which is the approach used to construct the
optimal controllers. Explicit state-space formulae are provided, and they show that
each player has to do more than simply estimate the states that they cannot observe.
In other words, the simplest separation principle does not hold for this decentralized
control problem. Some intuition into the control policies is provided, and the order
of the optimal controllers is established.

In the next chapter, Zhang and Dullerud investigate the decentralized control prob-
lem in the setting of limited bandwidth sensing channels. Specifically, they consider
decentralized stabilization of a linear time-invariant (LTI) process by multiple con-
trol stations that receive sensing information through bit-rate limited channels but
cannot communicate directly with each other. The main result is a sufficient con-
dition on the respective channel data rates to guarantee system stabilizability. They
provide an explicit way to construct the associated stabilizing encoder, decoder, and
controller. They also present a robustness analysis showing that this control algo-
rithm is structurally robust against model mismatch.

Scutari et al. consider monotone games for cognitive radio systems. Noncoopera-
tive game theory is a branch of game theory for the resolution of conflicts among
interacting decision makers (called players), each behaving selfishly to optimize
his own well-being. Resolution is quantified in general through an objective func-
tion. In recent years, there has been a growing interest in adopting noncooperative
game theoretic approaches to model many communications and networking prob-
lems, where the interaction among several agents is by no means negligible and
centralized approaches are not suitable. Examples are power control and resource
sharing in wireless/wired and peer-to-peer networks, cognitive radio systems, and
distributed routing, flow and congestion control in communication networks). A
more general framework, suitable for investigating and solving various optimiza-
tion problems and equilibrium models, even when classical game theory may fail,
is the variational inequality (VI) problem, which constitutes a very general class of
problems in nonlinear analysis. Building on the VI framework, in this chapter, the
authors present a brief treatment of two classes of Nash problems and their appli-
cation to the design of cognitive radio (CR) systems. The first is the class of Nash
equilibrium problems (NEPs), where the interactions among players take place at
the level of objective functions only. The second is the class of generalized Nash
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equilibrium problems (GNEPs), where in addition the choices available to each
player also depend on the actions taken by rivals. The treatment covers the top-
ics of existence and global uniqueness of equilibria, as well as iterative algorithms
based on the best-response solution, along with their convergence properties.

Langbort studies a mechanism design approach to dynamic price-based control of
multi-agent systems, showing how ideas and tools from the field of mechanism de-
sign in economics can be brought to bear on the problem of price-based control
of dynamical systems. Specifically, he takes inspiration from the Vickrey–Clarkes–
Groves mechanism to design strategy-proof dynamic price functions, which can
induce subsystems to apply socially efficient control inputs even though agents are
self-interested and possibly strategically misreporting their cost and dynamic mod-
els to the control designer.

Another topic in game theory is recursive bargaining with dynamic accumulation.
Flamini studies a Rubinstein-style bargaining game in which parties are allowed to
invest part of the surplus available. Therefore, in addition to the standard problem
of how to divide the surplus for their own consumption, parties face the additional
problem of how much to invest, knowing that the level of investment affects the sur-
plus available in the next period. She provides an algorithm to solve the game when
the number of bargaining stages is finite but tends to infinity. She shows that there
is a unique solution, in which the investment and consumption shares become in-
dependent of the capital stock. The convergence of equilibrium demands is affected
by the elasticity of substitution and parties’ patience.

In Part II, distributed nonlinear estimation for a variety of sensor devices is devel-
oped by Simonetto and Keviczky. Distributed linear estimation theory has received
increased attention in recent years due to several promising, mainly industrial ap-
plications. Distributed nonlinear estimation, however, is still a relatively unexplored
field, despite the need presented by numerous practical problems with inherent non-
linearities. This work presents a unified way of describing distributed implementa-
tions of three commonly used nonlinear estimators: the extended Kalman filter, the
unscented Kalman filter and the particle filter. Leveraging on the presented frame-
work, they propose new distributed versions of these methods, in which the nonlin-
earities are locally managed by the various sensors whereas the different estimates
are merged based on a weighted average consensus process. The authors show how
the merging mechanism can handle sensors running different filters, which is espe-
cially useful when they are endowed with diverse local computational capabilities.
Numerical simulations of the proposed algorithms are shown to outperform the few
published ones in a localization problem via range-only measurements. Quality and
effectiveness are investigated in a heterogenous filtering scenario as well. As a spe-
cial case, they also present a way to manage the computational load of distributed
particle filters using GPU architectures.

Next, performance prediction in uncertain multi-agent systems usingL1-adaptation-
based distributed event-triggering is developed by Wang and Hovakimyan. This
chapter studies the impact of communication constraints and uncertainties on the
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performance of multi-agent systems, while closing the local loops with embedded
L1-adaptive controllers. A communication and adaptation co-design scheme is pro-
posed that helps one predict system performance. With this scheme, an agent lo-
cally determines its broadcast time instants using distributed event triggering. The
embedded L1-adaptive controller enables each agent to compensate for the local
uncertainties and disturbances. Performance bounds are derived on the difference
between the signals of the ideal model (in the absence of uncertainties and with
perfect communication) and the real system operating with the proposed co-design
scheme in the presence of uncertainties and communication constraints. It is shown
that these bounds can be arbitrarily reduced by decreasing the thresholds in the local
events and increasing the local adaptation gain in each subsystem, subject only to
hardware limitations. The proposed co-design scheme can help one predict the per-
formance of multi-agent systems in the presence of uncertainties. The results can be
used for design guidelines in safety-critical applications, including air traffic control
and collision avoidance in multi-agent systems.

Weight determination by manifold regularization is the topic of Ohlsson and Ljung.
A new type of linear kernel smoother is derived and studied. The smoother, referred
to as weight determination by manifold regularization, is the solution to a regular-
ized least squares problem. The regularization avoids overfitting and can be used to
express prior knowledge of an underlying smooth function. An interesting property
of the kernel smoother is that it is well suited to systems governed by the semisuper-
vised smoothness assumption. Several examples are given to illustrate this property,
the authors also discuss why these types of techniques can hold a potential interest
for the system identification community.

Beck et al. study dynamic coverage and clustering, using a maximum entropy ap-
proach. They present a computational framework for solving a large class of dy-
namic coverage and clustering problems, ranging from those that arise in the deploy-
ment of mobile sensor networks to the classification of cellular data for diagnosing
cancer stages. This framework provides a way for to identify natural clusters in an
underlying dataset, and allows them to address inherent trade-offs such as those be-
tween cluster resolution and computational cost. More specifically, they define the
problem of minimizing an instantaneous coverage metric as a combinatorial opti-
mization problem in a maximum entropy principle framework, which is formulated
specifically for the dynamic setting. Location of cluster centers and their associated
velocity fields is cast as a control design problem that ensures the algorithm achieve
progressively better coverage with time.

Transverse linearization for underactuated nonholonomic mechanical systems with
application to orbital stabilization is studied by Freidovich and Shiriaev, who con-
sider a class of mechanical systems with an arbitrary number of passive (non-
actuated) degrees of freedom, which are subject to a set of nonholonomic con-
straints. They assume that the challenging problem of motion planning is solved,
giving rise to a feasible desired periodic trajectory. Their goal is either to analyze
orbital stability of this trajectory with a given time-independent feedback control
law or to design a controller. They extend their previous work done for mechan-
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ical systems without nonholonomic constraint. The main contribution is an ana-
lytical method for computing coefficients of linear reduced order control system
equations—solutions of which approximate dynamics are transversal to the pre-
planned trajectory. This linear system is shown to be useful for stability analysis
and for design of feedback controllers of orbitally exponentially dynamics.

In Part III, a distributed nonlinear model predictive control (NMPC) scheme with-
out stabilizing terminal constraints is designed by Grüne and Worthmann, who con-
sider a distributed NMPC scheme in which the individual systems are coupled via
state constraints. In order to avoid violation of the constraints, subsystems commu-
nicate their individual predictions to the other subsystems once in each sampling
period. For this setting, Richards and How have proposed a distributed MPC for-
mulation with stabilizing terminal constraints. In this chapter, it is shown how this
scheme can be extended to MPC without stabilizing terminal constraints or costs.
They show theoretically and by means of numerical simulations that under a suit-
able controllability condition, stability and feasibility can be ensured even for rather
short prediction horizons.

A set theoretic method for verifying feasibility of a fast explicit nonlinear model
predictive control is proposed by Raimondo et al.. In this chapter an algorithm for
nonlinear explicit model predictive control is presented. A low complexity reced-
ing horizon control law is obtained by approximating the optimal control law using
multiscale basis function approximation. Simultaneously, feasibility and stability of
the approximate control law is ensured through the computation of a capture basin
(region of attraction) for the closed-loop system. In previous work, interval methods
were used to construct the capture basin (feasible region), yet this approach suffered
due to slow computation times and high grid complexity. They suggest an alternative
to interval analysis based on zonotopes. The suggested method significantly reduces
the complexity of the combined function approximation and verification procedure
through the use of DC programming, and recursive splitting. The result is a mul-
tiscale function approximation method with improved computational efficiency for
fast nonlinear explicit MPC with guaranteed stability and constraint satisfaction.
Stability with uniform bounds for online dial-a-ride problems under some reason-
able load is considered.

A survey and directions for future research towards parallel implementation of hy-
brid MPC is presented by Axehill and Hansson. Different methods for achieving
parallelism at different levels of the algorithms are surveyed. It is seen that there are
many possible ways of obtaining parallelism for hybrid MPC, and it is by no means
clear which possibilities should be utilized to achieve the best possible performance.
An answer to this question is a challenge for future research.

Hierarchical model predictive control for plug-and-play resource distribution is de-
veloped by Bendtsen et al., who deal with hierarchical model predictive control of
distributed systems. A three-level hierarchical approach is proposed, consisting of a
high level MPC controller, a second level of so-called aggregators, controlled by an
on-line MPC-like algorithm, and a lower level of autonomous units. The approach
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is inspired by smart grid electric power production and consumption systems, where
the flexibility of a large number of power producing and/or power consuming units
can be exploited in a smart grid solution. The objective is to accommodate the load
variation on the grid, arising on the one hand from varying consumption and on the
other hand by natural variations in power production, e.g., from wind turbines. The
proposed method can also be applied to supply chain management systems, where
the challenge is to balance demand and supply, using a number of storages each
with a maximal capacity. The algorithm will then try to balance the risk of indi-
vidual storages running empty or full with the risk of overproduction or unsatisfied
demand. The approach presented is based on quadratic optimization and possesses
the properties of low algorithmic complexity and of scalability. In particular, the pro-
posed design methodology facilitates plug-and-play addition of subsystems without
redesign of any controllers. The method is verified by a number of simulations fea-
turing a three-level smart grid power control system for a small isolated power grid.

Hierarchical model-based control for automated baggage handling systems is pro-
posed by Tarau et al.. Modern baggage handling systems transport luggage in an
automated way using destination coded vehicles (DCVs). These vehicles transport
the bags at high speeds on a network of tracks. To control the route of each DCV in
the system, they first propose centralized and distributed predictive control methods.
This results in nonlinear, nonconvex, mixed-integer optimization problems. There-
fore, the proposed approaches will be expensive in terms of computational effort. As
an alternative, they also propose a hierarchical control framework where at higher
control levels they reduce the complexity of the computations by simplifying and
approximating the nonlinear optimization problem by a mixed integer linear pro-
gramming (MILP) problem. The advantage is that solvers are available for MILP
problems that allow us to efficiently compute the global optimal solution. They as-
sess the performance of the proposed control approaches using a benchmark case
study.

Krumke and Rambau present stability analysis with uniform bounds for online dial-
a-ride problems under reasonable load. In continuously running logistic systems
(like in-house pallet transportation systems), finite buffer capacities ususally re-
quire controls achieving uniformly bounded waiting queues (strong stability). Stan-
dard stochastic traffic assumptions (arrival rates below service rates) cannot in gen-
eral guarantee these strong stability requirements, no matter which control is used.
Therefore, the worst case traffic notion of reasonable load was introduced, origi-
nally for the analysis of the on-line dial-a-ride problem. Roughly speaking, a set
of requests is reasonable if the requests that come up in a sufficiently large time
period can be served in a time period of at most the same duration. The rationale
behind this is that the occurrence of nonreasonable request sets renders the system
overloaded, and capacity should be extended. For reasonable load, there are control
policies that can guarantee uniformly bounded flow times, leading to strong stability
in many cases. Control policies based on naı̈ve reoptimization, however, can in gen-
eral achieve neither bounded flow times nor strong stability. This chapter reviews
the concept and examples for reasonable load. Moreover, it presents new control
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policies achieving strong stability as well as new elementary examples of request
sets where naı̈ve reoptimization fails.

Altogether, the main theme of the book is distributed decision making and control
for complex systems in engineering, economics and logistics. The wide range of
contributions illustrates the vitality of the research field and many promising direc-
tions for the future.

Lund, Rolf Johansson
Midwinter 2011 Anders Rantzer
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e-mail: anton.shiriaev@itk.ntnu.no

Andrea Simonetto
Delft Center of Systems and Control, Delft Technical University, Mekelweg 2,
2628 CD Delft, The Netherlands
e-mail: a.simonetto@tudelft.nl

Jakob Stoustrup
Department of Electronic Systems, Automation and Control, Aalborg University,
Fr. Bajers Vej 7C, 9220 Aalborg, Denmark
e-mail: jakob@es.aau.dk

Sean Summers
Automatic Control Laboratory, ETH, Physikstrasse 3, 8092 Zürich, Switzerland
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Chapter 1
Primal and Dual Criteria for Robust Stability
Applied to Large Scale Systems

Ulf T. Jönsson

Abstract Primal and dual formulations of stability criteria based on multipliers will
be discussed. The foundation for multiplier-based stability analysis is the use of a
convex cone of multipliers to characterize the uncertainty in a system. The primal
and dual stability criteria are formulated as convex feasibility tests involving the
nominal dynamics and multipliers from the cone and the polar cone, respectively.
The motivation for introducing the dual is that it provides additional insight into the
stability criterion and that it is sometimes easier to use than the primal.

The case considered in this chapter is that of uncertainty as it represents the inter-
connection of a complex network. The multipliers are used to describe characteristic
properties of the network such as the spectral location or the structure of the under-
lying graph.

1.1 Introduction

In this chapter, we derive the dual of a class of primal stability criteria that are
defined in terms of multipliers. Multipliers are typically used to characterize com-
plicated or uncertain components in the system. Here, we let the multipliers char-
acterize the network interconnection of a system where single-input single-output
(SISO) linear systems are connected over the network. We show that the dual cri-
terion provides insight into the structure of the stability criterion, which sometimes
allows us to derive simpler and more explicit criteria.

The traditional point of view in large scale systems analysis characterizes the var-
ious subsystems using integral quadratic constraints (IQC) and then combines these
into an aggregate IQC that the interconnection operator must satisfy; see [9, 13],
where dissipation theory was used and [8] for general IQCs. A bottleneck that

Ulf T. Jönsson (11 May 1963–11 May 2011)
Division of Optimization and Systems Theory, Department of Mathematics, Royal Institute of
Technology, 10044 Stockholm, Sweden
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sometimes limits applicability is the computational complexity, which does not
scale gracefully unless network structure can be explored. Recently, there has been
progress in identifying network structures for which the analysis decomposes into
equivalent criteria consisting of subproblems that can be solved with low effort; see
e.g. [12, 3, 10].

Many applications of recent interest motivate the reverse point of view, i.e., to let
the IQC characterize the network structure and then to verify that the subsystems
jointly satisfy the complementary IQC. This is the motivation behind the examples
in this chapter. To our knowledge there are only a few available works that take
this perspective. In [4, 6] multipliers were used to characterize the spectrum of the
network, while in [5] bipartite network structures were considered. We limit the
discussion to linear systems and IQCs defined pointwise in frequency. This covers
many interesting cases and it simplifies the treatment.

The chapter is organized as follows. We first introduce the notation used. In the
second section we present our main primal and dual stability criteria. In Sec. 1.3 we
discuss a point of view for large scale systems analysis where the focus is on char-
acterizations of the interconnection structure rather than of the individual subsystem
dynamics. We illustrate this approach in Sec. 1.4, where primal and dual stability
criteria are derived for several frequently appearing interconnection structures.

1.1.1 Notation and Preliminaries

We let R denote the real numbers, R+ = {x ∈ R : x ≥ 0}, C the complex numbers,
C+ = {s ∈C : Re s > 0} and clC+ = {s ∈ C : Res≥ 0}∪{∞}. We let1

A(C+)n×m = {H : clC+→Cn×m|H is analytic in C+ and continuous on clC+}

be the algebra of transfer functions that are analytic in the open right half-plane
and continuous on clC+. This implies continuity on the extended imaginary axis
jR∪{∞}. We equip it with the norm ‖H‖= maxω∈R∪{∞}(σ̄(H( jω)), where σ̄(·)
denotes the largest singular value. We will throughout the chapter use the compact

notation An×m def
= A(C+)n×m. A transfer function is in this chapter called stable if

and only if it belongs to An×m.
We let Sm×m

C =
{

X ∈ Cm×m : X = X∗} be the Hilbert space of Hermitian matri-
ces equipped with the inner product 〈X , Y〉 = tr(XY ) and the corresponding norm
‖X‖= tr(X2)1/2 (the Frobenius norm). We use the standard notation X ≻ 0 (X � 0)
to denote that the matrix X ∈ Sm×m

C is positive definite (positive semidefinite).
Suppose K ⊂ Sm×m

C is a convex cone. The negative polar cone is the closed
convex cone defined as

K⊖ =
{

Y ∈ Sm×m
C : 〈X , Y〉 ≤ 0; ∀X ∈ K

}
.

1 This algebra is obtained by Möbius transformation of the frequency variable of the so-called disc
algebra of functions that are analytic inside the unit disc.
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The sum of two convex cones is defined as K1 +K2 = {X1 +X2 : X1 ∈ K1; X2 ∈K2}.
We will use the following property.

Lemma 1.1. Let K1, . . . ,KN ⊂ Sm×m
C be nonempty convex cones. Then

(
N

∑
j=1

K j)
⊖ = ∩N

j=1K⊖
j , (∩N

j=1clK j)
⊖ = cl

N

∑
j=1

K⊖
j

Proof. The result holds for nonempty convex cones in Rn; see Corollary 16.4.2
in [11]. Since the space Sm×m

C with inner product 〈X , Y 〉 = tr(XY ) is isometrically

isomorphic to Rm2
the result also holds for cones defined on Sm×m

C . ⊓⊔
Finally, we define the convex hull as

co{w1, . . . ,wn} := {
n

∑
i=1

α iwi : α i ≥ 0;
n

∑
i=1

α i = 1},

the convex conic hull as cone{w1, . . . ,wn} := {∑n
i=1 α iwi : α i ≥ 0}, and the direct

sum of matrices ⊕n
i=1Mi = diag(M1, . . . ,Mn).

1.2 Primal and Dual Stability Criteria

We consider the feedback interconnection defined as

v = ∆w+ r1,

w = Hv + r2,
(1.1)

where ∆ ,H ∈ An×n. This interconnection is called stable if and only if

[∆ ,H] :=

[
∆
I

]
(I−H∆)−1

[
H I

]
∈ A2n×2n.

The system ∆ is, in some of our applications below, a transfer function from An×n

but more often a real or complex matrix representing a network interconnection.
Since the systems are linear and time-invariant we employ a frequency-wise anal-
ysis. Note that the primal and dual stability criteria in the theorems below easily
can be generalized to stability criteria for interconnections where ∆ is a nonlinear
operator. This follows by invoking the theory of integral quadratic constraints.

We further use the operator MH : S2n×2n
C →Sn×n

C and its adjoint M×
H : Sn×n

C →
S2n×2n

C defined as

MHΠ =

[
I
H

]∗

Π

[
I
H

]
, M×

H Z =

[
I
H

]
Z

[
I
H

]∗

. (1.2)

1 Primal and Dual Criteria 5
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It is often the case that ∆ is not exactly specified or known. Assume that ∆ ∈ S∆ ,
where S∆ is a set of transfer functions such that the following assumptions and
multiplier description hold:

Assumption 1.1 (Assumptions under uncertain ∆ ).

(a)For each frequency ω ∈ jR∪{∞}, there exist closed convex cones Π1,∆ , . . . ,ΠN,∆

such that

Πk,∆ ⊂ {Π ∈ S2n×2n
C : ∆∗Π11∆ +∆∗Π12 + Π∗

12∆ +Π22 � 0, ∀∆ ∈ S∆},

where ∆ := ∆( jω) and S∆ := S∆ ( jω);
(b)the set S∆ is pathwise connected (in the norm topology);
(c)there exists ∆0 ∈ S∆ such that the interconnection [∆0,H] is stable.

Note that since H is stable it often suffices to let S∆ = {τ∆ : τ ∈ [0,1]}, where ∆ is
a known transfer function. In this case we use ∆0 = 0.

Given the above assumptions we have the following stability theorem.

Theorem 1.1. Under Assumption 1.1 the system (1.1) is stable if either of the fol-
lowing equivalent conditions are satisfied:

(a) Primal condition: For every ω ∈R∪{∞} there exists Π ∈ ∑N
k=1 Πk,∆ ( jω) such

that
MH( jω)Π ≻ 0. (1.3)

(b) Dual condition: For every ω ∈R∪{∞}

M×
H( jω)Z 6∈ ∩

N
k=1Π⊖

k,∆ ( jω), ∀Z ∈ Z⌋⊣l, (1.4)

where
Z⌋⊣l= {Z ∈ Sn×n

C : Z � 0; tr(Z) = 1}.

Proof. A proof can be found in the appendix. ⊓⊔

Note that it is sufficient that one cone exist for which M×
H( jω)

Z 6∈Π⊖
k,∆ ( jω)

. Hence,
the more multiplier descriptions we have available the more likely it is that the
stability test will be successful.

There are examples when ∆ is known and it is undesirable to connect it with the
zero matrix, e.g., when using S∆ = {τ∆ : τ ∈ [0,1]} leads to conservative results.
Then the following assumption and subsequent theorem can be more useful.

Assumption 1.2 (Assumptions under known ∆ ).

(a)For each frequency ω ∈ jR∪{∞}, there exist closed convex cones Π1,∆ , . . . ,ΠN,∆

such that

Πk,∆ ⊂ {Π ∈ S2n×2n
C : Π22 � 0; ∆∗Π11∆ + ∆∗Π12 +Π∗

12∆ + Π22 � 0},

where ∆ := ∆( jω)).
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(b) There exists a transfer function H0 ∈ An×n such that [∆ ,H0] is stable.

Theorem 1.2. Under Assumption 1.2 the system (1.1) is stable if either of the fol-
lowing equivalent conditions are satisfied:

(a)Primal condition: For every ω ∈ R∪{∞} there exists Π ∈ ∑N
k=1 Πk,∆ ( jω) such

that
MH( jω)Π ≻ 0 and MH0( jω)Π ≻ 0. (1.5)

(b)Dual condition: For every ω ∈R∪{∞}

M×
H( jω)

Z1 + M×
H0( jω)

Z0 6∈ ∩N
k=1Π⊖

k,∆ ( jω)
, ∀(Z1,Z0) ∈ Z⌋⊣l, (1.6)

where

Z⌋⊣l= {(Z1,Z0) ∈ Sn×n
C ×Sn×n

C : Z1,Z0 � 0; tr(Z1)+ tr(Z0) = 1}.

Proof. The fact that the primal condition implies that the system (1.1) is stable
is analogous to the corresponding proof of Theorem 1.1, except that we use the
parametrization Hθ = θH +(1− θ)H0, θ ∈ [0,1] and keep ∆ fixed. The proof of
the equivalence between the primal and dual stability condition can be found in [5].

⊓⊔

1.3 Application to Large Scale Interconnected Systems

The primal and dual stability criteria introduced in the previous section will be ap-
plied to large scale systems in the remaining sections of the chapter. We consider
the case wherein a set of linear time-invariant single-input single-output dynamics
{Hk : k = 1, . . . ,n} are interconnected over a network described by Γ . This implies
that H = diag(H1, . . . ,Hn) and ∆ = Γ when we use the results in the previous sec-
tion. It provides a compact way of modeling very general networks as is illustrated
in Fig. 1.1. An effective approach to large scale systems analysis is to first charac-
terize the subsystem dynamics and then to verify that the interconnection operator
satisfies the complementary aggregate criterion. In this chapter, we propose an alter-
native approach, where we first find a characterization of the interconnection opera-
tor and then verify that the subsystem dynamics satisfy the complementary criterion.
This approach is sometimes useful when a large number of structurally similar sys-
tems are interconnected over a network with some inherent structure. The goal is to
obtain criteria that are:

1. scalable in the sense that the analysis requires only a moderate increase in com-
putational complexity as the network size increases;

2. simple to use and such that the contribution from the individual dynamics Hk is
clarified.

1 Primal and Dual Criteria 7
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12

3 4

5

H4
w4v4

H

Γ

H =




H1

. . .

Hn




Γ represents the
interconnection topology

Fig. 1.1 Compact modeling of large scale systems: The figure On the left illustrates a part of a
large scale system where the inputs and outputs of the subsystems Hk are interconnected in some
complex fashion. We restrict attention to the case when the Hk are SISO linear time-invariant
systems. The incoming arcs are summed at the input of Hk and its output is communicated to one
or several neighboring subsystems. The figure on the right shows a more compact model of the
system where the subsystem dynamics are collected in a diagonal transfer function H and operator
Γ represents their interconnection.

We remark that a complete characterization of the network usually is difficult to find
and expensive to use. Instead, one has to search for structure in the network that is
easy to explore. The approach is well motivated in the analysis of very large scale
systems where simple-to-use criteria (e.g., graphical criteria) are valuable even at
the expense of possible conservatism.

Some properties of interconnections that recently have been used to derive scal-
able stability criteria are the spectral characteristic of the interconnection which has
been used in the analysis of consensus networks [6, 4], and the bipartite intercon-
nection structure of networks that appear in Internet congestion control [7, 5].

In the examples in the next section we will illustrate how the primal and the dual
criteria apply in some structured large scale networks. We discuss, in particular,
spectral characterizations of networks, characterization of some bipartite structures
and an approach to model the adjacency matrix of sparse weighted graphs with good
accuracy. For each case we perform the following three steps:

1. Introduce multipliers to characterize the network interconnection.
2. Formulate the primal criterion. The primal criterion is typically not easy to in-

terpret but it can be tested using convex optimization and it generalizes also to
the case when the subsystem dynamics are nonlinear and time-varying.

8 U.T. Jönsson
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3. Apply the dual criterion and use it to derive new formulations of the stability
criterion. This sometimes provide nice interpretations of the primal multiplier-
based criterion.

1.4 Examples

In this section we consider a few examples illustrating the primal and dual stability
criteria and the framework suggested in Sec. 1.3. In the first example we discuss
the use of identical multipliers for all subsystems. The spectral characterization of
the network used in [4] is an interesting case, which can be used when we con-
sider normal interconnection matrices. A similar treatment will then be applied to
an aggregate bipartite model that appears in Internet congestion control. The third
example presents a simplified version of a result from [5], and it indicates how
symmetric bipartite interconnections can be treated in the framework. Finally, we
discuss a simple way to find analysis results of relatively low complexity for gen-
eral networks. We only state the primal and dual stability condition but never any
complete theorem statement.

1.4.1 Spectral Characterization of Interconnections

Consider the case when H = diag(H1, . . . ,Hn), where each Hk ∈ A and Γ ∈ Rn×n.
The system represents a set of heterogeneous stable linear time-invariant (LTI)
single-input single-output (SISO) systems interconnected over a network defined
by the interconnection matrix Γ . We will use Theorem 1.2 with H0 := h0In, where
h0 ∈ A and the nominal homogeneous interconnection [Γ ,h0In] is assumed stable.

One possibility is to use identical multipliers for the subsystems, i.e.,

ΠΓ =

{[
π11In π12In

π̄12In π22In

]
: π22 ≤ 0;Γ ∗Γ π11 +Γ ∗π12 +Γ π̄12 + π22In � 0

}
.

This can equivalently be written ΠΓ = {π⊗ In : π ∈ πΓ }, where πΓ is defined as

πΓ = {π ∈ S2×2
C : π22 ≤ 0; Γ ∗Γ π11 +Γ ∗π12 + π∗

12Γ +π22In � 0}
= {π ∈ S2×2

C : 〈π , V0〉 ≤ 0; 〈π , V1(v)〉 ≤ 0, v ∈Cn; |v|= 1}, (1.7)

where

V0 =

[
0 0

0 1

]
, V1(v) =

[
v∗Γ ∗Γ v v∗Γ v
v∗Γ ∗v v∗v

]
.

The primal stability condition in Theorem 1.2 reduces to the following condition:

1 Primal and Dual Criteria 9
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Primal condition: For every ω ∈R∪{∞} there exists π ∈ πΓ such that

π11 +2Reπ12Hk( jω)+ π22|Hk( jω)|2 > 0,

for k = 0,1, . . . ,n.
The interpretation is that the subsystems Hk must find one common multiplier

π ∈ πΓ such that the stability criterion is satisfied. This implies that we only need to
search for four parameters in the stability criterion. Another consequence of using
identical multipliers for the subsystems is that the dual will be formulated in terms
of convex hulls of the subsystem dynamics.

We next derive the dual condition along the lines of [5]. The condition W ∈Π⊖
Γ

is equivalent to

〈Π , W 〉=
〈[

π11 π12

π̄12 π22

]
,

[
tr(W11) tr(W12)

tr(W12) tr(W22)

]〉
≤ 0

for all π ∈ πΓ . It can be shown that

π⊖
Γ = cone{V0,V1(v) : v ∈ Cn; |v| = 1}. (1.8)

Indeed, it follows from Chapter 14 of [11] that π⊖
Γ = clcone{V0,V1(v) : v∈Cn; |v|=

1}, and since {V0,V1(v) : v ∈Cn; |v|= 1} is a nonempty compact set which does not
contain the origin, it follows that the conic hull is closed. It hence follows that the
polar cone is

Π⊖
Γ =

{[
W11 W12

W ∗
12 W22

]
∈ S2n×2n

C :

[
tr(W11) tr(W12)

tr(W ∗
12) tr(W22)

]
∈ π⊖

Γ

}
.

and thus the dual condition M×
H Z1 + M×

H0
Z0 6∈Π⊖

Γ becomes

[
tr(Z1 +Z0) tr(Z1H∗ +Z0H∗

0 )

tr(HZ1 + H0Z0) tr(HZ1H∗ + H0Z0H∗
0 )

]
6∈ π⊖

Γ .

Since H is diagonal and H0 is diagonal and homogeneous, i.e., H0 = h0In, it is no
restriction to let Z1 = diag(z1, . . . ,zn) and Z0 = z0In/n, where the elements satisfy
zk ≥ 0 and ∑n

k=0 zk = 1. We have shown that the dual stability condition in Theo-
rem 1.2 reduces to the following criterion:

Dual condition: For every ω ∈ R∪{∞}

co

{[
1 Hk( jω)

Hk( jω) |Hk( jω)|2

]
: k = 0,1, . . . ,n

}
∩π⊖

Γ = ∅.

The primal and dual criteria provide little insight, as they are formulated. They must
be verified using computations. However, it turns out that a rather simple criterion
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can be derived from the dual in special cases. We will here consider the case wherein
Γ is a normal matrix, which means that Γ is unitarily diagonalizable. In this case
the above multiplier characterization simplifies to

πΓ =
{

π ∈ S2×2
C : π22 ≤ 0, |λ k|2π11 +2Reλ kπ12 +π22 ≤ 0, ∀λ k ∈ eig(Γ )

}

=
{

π ∈ S2×2
C : 〈π, Vk〉 ≤ 0, k = 0,1, . . . ,n

}

and
π⊖

Γ = cone{Vk : k = 0,1, . . . ,n}.
where

V0 =

[
0 0

0 1

]
, Vk =

[
|λ k|2 λ k

λ k 1

]
, k = 1, . . . ,n.

It is now possible to use ideas from [4] to show that the dual can be verified using
various three-dimensional Nyquist criteria. Here, we will derive an inverse Nyquist
criterion.

The dual condition holds if the following system is violated at each frequency:

n

∑
k=0

zk = ∑
k=1

ψk|λ k|2,

n

∑
k=0

zkHk( jω) =
n

∑
k=1

ψkλ̄ k,

m

∑
k=0

zk|Hk( jω)|2 =
n

∑
k=1

ψk +ψ0,

for any parameters satisfying ∑n
k=0 zk = 1, zk ≥ 0 and ψk ≥ 0. Our first step is to

make the change of variables ẑk = zk|Hk( jω)|2 for k such that Hk( jω) 6= 0. Without
loss of generality, we may rescale the equation system by multiplying all equations
with a positive number. We may thus assume that

∑
k:Hk( jω) 6=0

ẑk = 1.

This gives the scaled equation system

∑
k:Hk( jω) 6=0

ẑk
1

|Hk( jω)|2 = ∑
k=1

ψk|λ k|2−ψn+1

∑
k:Hk( jω) 6=0

ẑk
1

Hk( jω)
=

n

∑
k=1

ψkλ̄ k

1 =
n

∑
k=1

ψk +ψ0,

1 Primal and Dual Criteria 11
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where ψk ≥ 0 and where ψn+1 = ∑k:Hk( jω)=0 zk/∑k:Hk( jω) 6=0 zk|Hk( jω)|2 could be
any positive number by proper choice of the zk. The dual holds when this system is
violated for any ω and any choice variables. Hence, the dual stability condition in
Theorem 1.2 becomes:

Dual condition: For every ω ∈ R∪{∞}

N̂ [H0, . . . ,Hn](ω)∩ Ω̂ = ∅,

where the three-dimensional inverse Nyquist polytope N̂ ⊂ C×R+ is defined as

N̂ [H0, . . . ,Hn] = co

{(
1

Hk( jω)
,

1
|Hk( jω)|2

)
: Hk( jω) 6= 0

}

and the instability region Ω̂ ⊂ C×R+ is defined as

Ω̂ = {α · co
{(

λ k, |λ k|2
)

: λ k ∈ eig(Γ )
}

: α ∈ [0,1]}− (0,R+).

Note that the last term in Ω̂ can be removed if Hk( jω) 6= 0, for all k = 1, . . . ,n. We
refer to [4] for a more in-depth discussion about this type of criterion.

1.4.2 Aggregate Bipartite Interconnections

In the next example we consider a model of Internet congestion control where the
the routing matrices and the link dynamics have been combined into one block; see
e.g., [7] for modeling details. The block diagram is illustrated in Fig. 1.2, where

source
control

H1

H2

Hn

R(−s)T F(s)R(s)

Fig. 1.2 Equilibrium dynamics of Internet congestion control.

F = ⊕L
l=1Fl and ρ(R( jω)∗R( jω)) ≤ 1. Here R(s) is a routing matrix where the

dynamics only are due to delays. We assume for simplicity that Gk,Fk ∈ A.
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Then the system is an interconnection on the form (1.1) with2

Γ (s) = R(−s)T F(s)R(s).

We will use Theorem 1.2 with H0 := h0In, i.e., the nominal dynamics are homo-
geneous. Let us use frequency-wise multipliers of the same type as in the previous
subsection, i.e., we use identical multipliers for the subsystems Hk.

The primal stability condition in Theorem 1.2 can be formulated as:

Primal condition: For every ω ∈R∪{∞} there exists π ∈ πΓ ( jω) such that

π11 +2Reπ12Hk( jω)+ π22|Hk( jω)|2 > 0

for k = 0,1, . . . ,n, where for Γ = Γ ( jω) we define πΓ as in (1.7) in Sec. 1.4.1.
As in Sec. 1.4.1, we obtain the following dual:

Dual condition: For every ω ∈ R∪{∞}

co

{[
1 Hk( jω)∗

Hk( jω) |Hk( jω)|2

]
: k = 0,1, . . . ,n

}
∩π⊖

Γ ( jω)
= ∅,

where for Γ = Γ ( jω), π⊖
Γ is defined as in (1.8).

The primal and dual criteria provide little insight as they are formulated. How-
ever, it turns out that a rather simple criterion can be derived from the dual if we
accept some additional conservatism.

Our first step is to notice that the change of variables ẑk = zk|Hk( jω)|2 in

n

∑
k=0

zk

[
1

Hk( jω)

][
1

Hk( jω)

]∗

6∈ π⊖
Γ (1.9)

gives the alternative formulation

∑
k:Hk( jω) 6=0

ẑk

[
Hk( jω)−1

1

][
Hk( jω)−1

1

]∗

6∈ π⊖
Γ −

{[
−ψn+1 0

0 0

]
: ψn+1 ≥ 0

}
, (1.10)

where we may assume ẑk ≥ 0 satisfies ∑n
k=0 ẑk = 1. This follows since it is possible to

rescale by multiplying with 1/∑k:Hk( jω) 6=0 zk|Hk( jω)|2 on both sides of the equation.
It then follows that

2 Note that Γ 6∈ A but the system can be transformed in such a way that the frequency domain
criteria presented in this subsection are valid stability tests. See [5].
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ψn+1 =
∑k:Hk( jω)=0 zk

∑k:Hk( jω) 6=0 zk|Hk( jω)|2 ,

which is an arbitrary positive number by suitable choices of the zk. This proves
(1.10).

There is then no loss of generality to assume that the elements in π⊖
Γ are scaled

such that the (2,2) element is one, i.e., we have

ψ0 +
N

∑
k=1

ψk|vk|2 = 1

for some ψk ≥ 0, k = 0,1 . . . ,n, and vk ∈Cn with |vk|= 1. Defining ṽk = vk

√
∑N

k=1 ψk

and αk = ψk/∑N
k=1 ψk, this can be written

N

∑
k=1

αk|ṽk|2 = 1−ψ0.

Since |ṽk| ≤ 1, it follows that (1.10) equivalently can be stated as

co

{(
1

Hk( jω)
,

1
|Hk( jω)|2

)
: Hk( jω) 6= 0

}
∩ Ω̂ = ∅,

where
Ω̂ = co{(v∗Γ v,v∗Γ ∗Γ v) : v ∈ Cn; |v| ≤ 1}− (0,R+).

To simplify this criterion we use an idea which we adopt from [14, 7] to overesti-
mate the set on the right hand side. Let Rl denote the lth row of R. Since ρ(R∗R)≤ 1
it follows that ∑L

l=1 |Rlv|2 ≤ 1 for |v| ≤ 1 and thus

(v∗Γ v,v∗Γ ∗Γ v) = (v∗R∗FRv,v∗R∗F∗RR∗FRv)

∈ {(v∗R∗FRv,αv∗R∗F∗FRv) : α ∈ [0,1]}

=

{
L

∑
l=1

(Fl ,α|Fl |2)|Rlv|2 : α ∈ [0,1]

}

=

{
(

L

∑
j=1

|R jv|2)
L

∑
l=1

(Fl ,α |Fl |2)
|Rlv|2

∑L
j=1 |R jv|2

: α ∈ [0,1]

}

⊂
{

(
L

∑
j=1
|R jv|2)co{(Fl,α |Fl|2) : l = 1, . . . ,L} : α ∈ [0,1]

}

⊂
{

co{(0,0),(Fl,α |Fl |2) : l = 1, . . . ,L} : α ∈ [0,1]
}

= co{(0,0),(Fl ,0),(Fl, |Fl |2) : l = 1, . . . ,L}.

It follows that

co{(v∗Γ v,v∗Γ ∗Γ v) : |v| ≤ 1} ⊂ co{(0,0),(Fl,0),(Fl , |Fl |2) : l = 1, . . . ,L}
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and hence that

Ω̂ ⊂ co{(0,0),(Fl,0),(Fl , |Fl|2) : l = 1, . . . ,L}− (0,R+).

It is easy to see that any element on the right hand side with positive second element
also belongs to co{(0,0),(Fl ,0),(Fl , |Fl|2) : l = 1, . . . ,L}. We arrive at the following
sufficent stability condition:

Simple dual condition: For every ω ∈R∪{∞}, N̂ [H0,H1, . . . ,Hn]∩Ω̂e = ∅, where

N̂ [H0,H1, . . . ,Hn] = co

{(
1

Hk( jω)
,

1
|Hk( jω)|2

)
: k = 1, . . . ,n

}
,

Ω̂e = co{(0,0),(Fl( jω),0),(Fl( jω), |Fl( jω)|2) : l = 1, . . . ,L}.

If we project this to the complex plane we get the following two-dimensional crite-
rion, which typically is sufficient at low frequencies (assuming Hk( jω) 6= 0)

co{H−1
0 ,H−1

1 , . . . ,H−1
n }( jω)∩ co{0,F1, . . . ,FL}( jω) = ∅.

The simple dual above is easier to use but more restrictive than our previous results
in [5].

1.4.3 Simple Symmetric Bipartite Interconnection

Consider the feedback interconnection of

H =

[
G 0

0 K

]
, Γ =

[
0 1

−1 0

]
,

which corresponds to a negative feedback interconnection of a plant G ∈ A with a
compensator K ∈ A. We will use Theorem 1.1 with SΓ = {τΓ : τ ∈ [0,1]} and the
multipliers

ΠΓ =








x1 y

x2 ȳ
ȳ −x2

y −x1


 : x1,x2 ≥ 0;y ∈ C





. (1.11)

In this case the primal condition becomes:

Primal condition: For every ω ∈ R∪{∞} there exists x1,x2 ≥ 0 and y ∈ C such
that
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x1− x2|G( jω)|2 + 2ReyG( jω) > 0,

x2− x1|K( jω)|2 + 2Re ȳK( jω) > 0.

It is shown in [5] that the dual condition in Theorem 1.1 in this case is reduced
to the following simple criterion:
Dual condition: For all ω ∈ R∪{∞}, G( jω)K( jω) 6∈ (−∞,−1].

Note that the dual resembles the classical Nyquist criterion. Hence, by optimiz-
ing over the parameters x1,x2 and y in the primal we obtain a criterion similar to
the classical Nyquist criterion. This is interesting because the the primal criterion
is valid also for nonlinear or time-varying operators. The idea in this example can
be generalized to systems interconnected over a symmetric bipartite graph. The bi-
partite graph can be given a characterization analogous to (1.11) with a resulting
stability criterion that takes both phase and magnitude of the loop gain into account.
We discuss this in further detail in [5].

1.4.4 General Interconnections

Consider the case where the interconnection Γ = [γ i j]
n
i, j=1 is defined in terms of

the adjacency matrix of a weighted directed graph G = (V ,E) with vertex set V =
{1,2, . . . ,n} and edge set e. Then γ i j is the weight of the edge from vertex j to vertex
i and γ ii is the weight of the loop from vertex i to itself. The dynamics in node i can
be represented as

wi = Hi(
n

∑
j=1

γ i jw j + r1,i)+ r2,i.

If the graph is sparse then this sum contains only a few terms. Next, we discuss
an attempt to use the interconnection structure to define multipliers. The results are
primarily of interest in the case of sparse graphs. We may consider Γ ∈ An×n by
doing frequency-wise analysis.

Let

Γ =




γ∗
1
...

γ∗
n


 ,

where γ∗
i =

[
γ i1 . . . γ in

]
. We may then use the multipliers

Πk =

{[
π11ekeT

k π12ekγ∗
k

π̄12γkeT
k π22γkγ∗

k

]
: π ∈ πset

}
,

where ek is the kth unit vector in Rn and where π set constrains the multipliers ap-
propriately. We may consider the case where
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πset =

{
π =

[
π11 π12

π̄12 π22

]
: ψ∗

k πψk ≤ 0, k = 1,2;ψ∗
3 πψ3 ≥ 0

}
,

where ψT
1 =

[
1 1

]
and either

ψT
2 =

[
0 1

]
and ψT

3 =
[

0 0
]

(1.12)

or
ψT

2 =
[

0 1
]

and ψT
3 =

[
1 0

]
. (1.13)

The first inequality involving ψ1 ensures that the multiplier characterization is valid,
while either of the last two could be included in order to enforce constraints on the
multipliers such that the results in the previous sections can be applied. Indeed, in
the case (1.12) we have the constraint π22 ≤ 0, which allows us to apply Theo-
rem 1.2. In the case (1.13) we have the constraints π11 ≥ 0 and π22 ≤ 0, which
allows us to apply Theorem 1.1 with SΓ = {τΓ : τ ∈ [0,1]}.

It is easy to see that the multipliers in Πk define valid characterizations of the
graph, since

Γ ∗Π11Γ +Γ ∗Π12 + Π∗
12Γ +Π22 = γkγ∗

k ψ∗
1 πψ1 � 0,

since π ∈ πset.
A special case of multipliers that satisfy (1.13) and that will be used later is

πset =

{
π =

[
x iy
−iy −x

]
: x≥ 0; y ∈ R

}
. (1.14)

Primal Stability Criterion

We restrict attention to the case where the multipliers are defined by π set in (1.14).
We can formulate the primal in Theorem 1.1 as

Primal condition: For every ω ∈R∪{∞} there exists πk ∈ π set, k = 1, . . . ,n, such
that

Ψ( jω) =
n

∑
k=1

MH( jω)Πk =
n

∑
k=1

[
I

H( jω)

]
∗
[

πk,11ekeT
k πk,12ekγ∗

k

π̄k,12γkeT
k πk,22γkγ∗

k

][
I

H( jω)

]
≻ 0

This criterion has many more parameters to optimize compared to the previous re-
sults, but it nevertheless has some attractive scalability properties: 1) the number of
parameters to optimize grows linearly as 4n with the dimension of the graph; 2) if
one more dynamic enters the network or some system is modified, feasibility of the
primal problem can be tested using an inexpensive sufficient test. To see this, let us
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introduce the notation

Γ̌ =




γ̌∗
1
...

γ̌∗
n

γ̌∗
n+1




=




γ∗
1 γ1,n+1
...

...

γ∗
n γn,n+1

γ∗
n+1 γn+1,n+1




(1.15)

and

Ȟ =⊕n+1
k=1Hk =

[
H 0

0 Hn+1

]
, (1.16)

Π̌k =

[
πk,11ěkěT

k πk,12ěkγ̌∗
k

π̄k,12γ̌kěT
k πk,22γ̌k γ̌∗

k

]
, (1.17)

where ěk is the kth unit vector in Rn+1 and πk ∈ πset.
The primal condition becomes (we suppress the argument ω)

Ψ̌ =
n+1

∑
k=1

MȞΠ̌k =

[
Ψ +Ψ̌11 Ψ̌12

Ψ̌∗
12 Ψ̌22

]
≻ 0,

where the blocks are defined in terms of the multipliers as

Ψ =
n

∑
k=1

MHΠk,

Ψ̌11 = πn+1,22H∗γn+1γ∗
n+1H,

Ψ̌12 =
n

∑
k=1

πk,12ekγk,n+1Hn+1 + π̄n+1,12H∗γn+1 +πn+1,22H∗γn+1γn+1,n+1Hn+1,

Ψ̌22 = MHn+1Πn+1 +
n+1

∑
k=1

πk,22|γk,n+1|2|Hn+1|2,

where

Πn+1 =

[
πn+1,11 πn+1,12γn+1,n+1

π̄n+1,12γ̄n+1,n+1 πn+1,22|γn+1,n+1|2

]
.

We will discuss a low complexity and low-dimensional test to verify that the system
remains stable when the Hn+1 enters the network (or is perturbed). We assume that

Ψ ( jω) =
n

∑
k=1

MH( jω)Πk � φ ( jω)I
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for some strictly positive function φ . Assume further that the dynamics in node n+1
only communicate with the dynamics in nodes N ⊂ {1, . . . ,n}, i.e., k ∈ N if and
only if either γk,n+1 6= 0 or/and γn+1,k 6= 0. Let

E =
[

ek : k ∈ N
]
,

Then the system remains stable if πn+1 ∈ πset exists such that (all other multipliers
are kept fixed)3: [

φ I +ETΨ̌11E ETΨ̌12

Ψ̌∗
12E Ψ̌22

]
( jω)≻ 0 (1.18)

for all ω ∈ R∪ {∞}. This “greedy” approach of accommodating new dynamics
into the stability test will not always work, but it is simple to use and inexpensive. It
works analogously to verify that the system remains stable if some of the dynamics
are perturbed.

Dual Stability Criterion

In order to derive the dual stability criterion we first notice that

Π⊖
k =

{
W =

[
W11 W12

W∗
12 W22

]
:

[
eT

k W11ek eT
k W12γk

γ∗
kW∗

12ek γ∗
kW22γk

]
∈ π⊖

set

}
.

This follows since it is easy to show that for any Π ∈Πk we have

〈Π , W〉=
〈[

π11 π12

π̄12 π22

]
,

[
eT

k W11ek eT
k W12γk

γ∗
kW∗

12ek γ∗
kW22γk

]〉
,

3 This follows since if we let Ě =
[

Ě1 Ě2

]
, where Ě1 =

[
ěk : k 6∈ N

]
and Ě2 =

[
ěk : k ∈ N

]
, and analogously Ê =

[
Ê1 E

]
, where Ê1 =

[
ek : k 6∈ N

]
and E =

[
ek : k ∈ N

]
, then

[
Ě ěn+1

]T
Ψ̌
[

Ě ěn+1

]
=

[
ÊT (Ψ +Ψ̌11)Ê ÊTΨ̌12

Ψ̌∗
12Ê Ψ̌22

]

≻




φ I 0 0

0 φ I +ETΨ̌1E ETΨ̌12

0 Ψ̌∗
12E Ψ̌22


 ,

where we used that ÊT
1 Ψ̌12 = 0, ÊT

1 Ψ̌11Ê = 0 by assumption and that ÊTΨ Ê ≻ ÊT φ Ê =[
φ I1 0

0 φ I2

]
, where the dimensions of the identity matrices I1 and I are n− |N| and |N |, re-

spectively. It follows that Ψ̌ ≻ 0 provided that (1.18) holds.
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which is nonpositive if and only if
[

eT
k W11ek eT

k W12γk

γ∗
kW∗

12ek γ∗
kW22γk

]
∈ π⊖

set.

We focus on the case (1.14), in which

π⊖
set =

{
W =

[
w11 w12

w̄12 w22

]
: Imw12 = 0; w11−w22 ≤ 0

}
.

Since the condition MHZ ∈Π⊖
k equivalently can be written as

ImeT
k ZH∗γk = 0,

eT
k Zek− γ∗

k HZH∗γk ≤ 0,
(1.19)

we get the following dual:

Dual condition: For every ω ∈ R∪{∞} and Z ∈ Z⌋⊣l there exists k ∈ {1, . . . ,n}
such that the equation system

ImeT
k ZH∗γk = 0

eT
k Zek− γ∗

k HZH∗γk ≤ 0

is violated.
By using a result on rank one decomposition of Hermitian positive semidefinite

matrices in [2] we obtain the following alternative formulation of the dual.

Alternative dual condition: For every ω ∈R∪{∞} and z ∈ zunit
def
= {z∈Cn : |z|=

1} there exists k ∈ {1, . . . ,n} such that

γ∗
k H( jω)z

eT
k z

6∈ (−∞,−1]∪ [1,∞).

Proof. Suppose that the dual is violated. This implies that for every Z ∈ Z⌋⊣l the
systems (1.19) are satisfied for all k ∈ {1, . . . ,n}. Let us consider some particular
index k ∈ {1, . . . ,n}. The condition (1.19) can equivalently be written

〈Z, A〉= 0 and 〈Z, B〉 ≤ 0, (1.20)

where

A = i(H∗γkeT
k − ekγ∗

k H),

B = ekeT
k −H∗γkγ∗

k H.
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Corollary 2.2. in [2] implies that there exists a rank one decomposition Z =

∑r
l=1 zlz∗

l where r = rankZ, and zl ∈ Cn is such that z∗
l Azl = 0 and z∗

l Bzl ≤ 0,
l = 1, . . . ,r, i.e.,

Im(z∗
l ekγ∗

k Hzl) = 0,

|eT
k zl |2−|γ∗

k Hzl |2 ≤ 0,
(1.21)

for l = 1, . . . ,r. Conversely, if zl ∈ Cn exists such that (1.21) holds, then (1.20) ob-
viously holds with Z = ∑r

l=1 zlz∗
l .

The dual stability criterion holds if and only if for every Z ∈ Z⌋⊣l an index
k ∈ {1, . . . ,N} exists such that (1.19) is violated. The above arguments show that
this is equivalent to the condition that for every zl ∈ Cn there exists k ∈ {1, . . . ,n}
such that (1.21) is violated. Clearly, if the first equation in (1.21) is violated then
Imγ∗

k Hz/eT
k z 6= 0 and otherwise we must have |γ∗

k Hz/eT
k z|< 1, i.e., if (1.21) is vio-

lated we must have γ∗
k Hz/eT

k z 6∈ (−∞,−1]∪ [1,∞).
Note that it is no restriction to normalize z such that it belongs to zunit. ⊓⊔

The alternative dual can easily be interpreted. It implies that the equation

(λ I−Γ H( jω))z = 0

has no nontrivial solution for any real number with |λ | ≥ 1. Since it holds for any
ω ∈ R∪{∞} it follows that:

1. the closed loop system is well-posed, i.e., I−Γ H(∞) is an invertible matrix;
2. φ( jω) = det(I− τΓ H( jω)) 6= 0 for all ω ∈R∪{∞} and any τ ∈ [0,1].

The second condition is a zero exclusion property, which allows us to conclude
stability of the network.

Acknowledgements The work was supported by the Swedish Research Council (VR), the AC-
CESS Linnaeus Centre and the EU FP7 project FeedNetBack.

Appendix

The primal stability condition implies that the system (1.1) is stable. Indeed, by
Assumption 1.1(b) there exists a continuous parametrization ∆θ , θ ∈ [0,1], such
that ∆1 = ∆ . Let

ψ(s,θ ,α) = |det(I−H(s+ α)∆θ (s+α))|.

We will show below that the primal condition together with the inequality in the
definition of the cones Πk,∆ in Assumption 1.1(a) can be shown to imply

ψ( jω ,θ ,0) = |det(I−H( jω)∆θ ( jω))| ≥ ε, ∀ω ∈R∪{∞},θ ∈ [0,1] (1.22)
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for some ε > 0. From Assumption 1.1(c) it follows that (I −H∆0)
−1 ∈ An×n

and hence that ψ(s,0,0) has no zeros in the closed right half-plane. By continu-
ity ψ(s,θ ,α) satisfies ψ( jω ,θ ,α) > 0, ∀ω ∈R∪{∞},θ ∈ [0,1] for small enough
α > 0. This function is analytic in the closed right half plane and we may apply the
zero exclusion principle to conclude that ψ(s,1,α) has no zeros in the closed right
half-plane; see e.g. Lemma A.1.18 in [1]. Once again, by continuity it follows that
ψ(s,1,0) also has no zeros in closed right half plane and hence (I−H∆)−1 ∈An×n

and the claim is proven.
To prove (1.22) we use the following version of Finsler’s lemma.

Lemma 1.2. Let B ∈ Cn×m, m < n and B⊥ ∈ C(n−m)×n be such that (1) B⊥B = 0,

(2) rank
[

B B∗
⊥

]
= n, and (3) B⊥B∗

⊥ � I. Then the following are equivalent:

i. B∗AB≺ 0,
ii. there exists µ ∈ (0,µ∗] such that A≺ µB∗

⊥B⊥, where

µ∗ = |A|+ |A|2|B|2
σmin(B∗AB)

Remark 1.1. If in (i) we have B∗AB�−ηI then we may take

µ∗ = |A|+ |A|
2|B|2
η

Proof. The proof of (ii)⇒ (i) is obvious. For (i)⇒ (ii) suppose there exists x ∈Cn

such that x∗Ax≥ 0. If x∈KerB⊥ it follows by assumption (1) and (2) that x = Bu for
some u ∈ Cm. This would contradict i. Hence, we may assume B⊥x 6= 0. However,
then x∗(A−µB∗

⊥B⊥)x < 0 whenever µ > x∗Ax/|B⊥x|2. In order to derive a bound
on µ we notice that x = Bu+x⊥ for some u∈Cm and some nonzero x⊥ ∈RangeB∗

⊥.
We have

max
x:B⊥x6=0

x∗Ax
|B⊥x|2 = max

x⊥∈Range B∗
⊥

x∗
⊥(A−A∗B(B∗AB)−1B∗A)x⊥

|B⊥x⊥|2

≤ |A|+ |A|2|B|2/σmin(B
∗AB), (1.23)

where the equality follows by using (i), which allows us to optimize over u ∈Cm in
the decomposition x = Bu + x⊥. In the last inequality we used (3). This concludes
the proof. ⊓⊔

By Assumption 1.1 (a) and Theorem 1.1(a) there exists for each ω ∈ R∪{∞}, a
multiplier Πω ∈ ∑N

k=1 Πk,∆ ( jωk) such that for all θ ∈ [0,1],
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[
∆θ ( jω)

I

]∗

Πω

[
∆θ ( jω)

I

]
� 0

and

[
I

H( jω)

]∗

Πω

[
I

H( jω)

]
� (1 +η)(2 +‖H‖2))I,

where η > 0. We may perturb the multipliers as Πω := Πω − (1 +η)I such that

[
∆θ ( jω)

I

]∗

Πω

[
∆θ ( jω)

I

]
�−(1+ η)I

and

[
I

H( jω)

]∗

Πω

[
I

H( jω)

]
� (1 +η)I.

By continuity of H and ∆θ on clC+, there exists a finite grid of frequencies−∞=
ω1 < ω2, · · ·ωL−1 < ωL =∞ such that Π : jR∪{∞}→ S2n×2n

C defined as

Π( jω) =





Πω l , ω ∈ [ω l ,ω l+1)

Πω1 , ω = ωL

satisfies
[

∆θ ( jω)

I

]∗

Π(ω)

[
∆θ ( jω)

I

]
�−I,

[
I

H( jω)

]∗

Π(ω)

[
I

H( jω)

]
� I

for all ω ∈R∪{∞}.
We may now apply Lemma 1.2 with A = Π( jω) and

B =

[
∆θ ( jω)

I

]
and B⊥ =

[
I −∆θ ( jω)

]
,

which satisfies (1)–(3) in Lemma 1.2. This implies that

I ≺
[

I
H( jω)

]∗

Π( jω)

[
I

H( jω)

]
≺ µ |I−∆θ ( jω)H( jω)|2,

where µ ≤ ‖Π‖+‖Π‖2(1+‖∆‖2) and where ‖Π‖= maxl∈{1,...,N} |Π( jω l)|. This
choice of µ makes the above inequality valid for all ω ∈ R∪{∞}, which implies
that there exists ε > 0 such that

|det(I−H( jω)∆θ ( jω))|= |det(I−∆θ( jω)H( jω))| ≥ ε (1.24)

for all ω ∈R∪{∞} and θ ∈ [0,1], which proves (1.22).
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Finally, to prove that the primal and dual conditions are equivalent, i.e., that (a)
and (b) in the theorem statement are equivalent, we first derive a criterion for (a)
being violated.

If the criterion in (a) is violated there exists ω ∈ R∪{∞} such that the sets

C1 =

{
MH( jω)Π : Π ∈

N

∑
k=1

Πk,∆ ( jω)

}

C2 =
{

P : P ∈ Sm×m
C , P≻ 0

}

are disjoint. By the separating hyperplane theorem [11, Theorem 11.3] a nonzero
Z � 0 exists such that (the argument ω is suppressed)

〈MHΠ , Z〉 ≤ 0, ∀Π ∈ ∑N
k=1 Πk,∆

⇔ tr((MHΠ)Z) ≤ 0, ∀Π ∈ ∑N
k=1 Πk,∆

⇔ tr
(
Π(M×

H Z)
)
≤ 0, ∀Π ∈ ∑N

k=1 Πk,∆ ,

which implies

M×
H( jω)Z ∈ (

N

∑
k=1

Πk,∆ )⊖ = ∩N
k=1Π⊖

k,∆ ( jω), (1.25)

where we used Lemma 1.1 in the last equality. Note that we may normalize the dual
variables such that tr(Z) = 1, i.e., Z ∈ Z⌋⊣l, where

Z⌋⊣l= {Z ∈ Sm×m
C : Z � 0; tr(Z) = 1}, (1.26)

which is a compact convex set.
In order to prove the theorem we need to establish the reverse direction of the

above duality result. Hence, if (1.25) fails, i.e., (1.4) holds, then ∀ω ∈ R∪{∞} the
two convex sets

C3 =
{

M×
H( jω)Z : Z ∈ Z⌋⊣l

}

C4 = ∩N
k=1Π⊖

k,∆ ( jω)

are disjoint. From Lemma 1.1, it follows that

(∩N
k=1Π⊖

k,∆ )⊖ = cl
N

∑
k=1

Πk,∆ ,

where we used that Πk,∆ is a closed convex cone in the topology defined by the
Frobenius norm, and therefore Π⊖⊖

k,∆ = Πk,∆ . Hence, since C3 is convex and compact
and C4 is closed and convex it follows that a hyperplane exists that separates the two
sets strongly [Corollary 11.4.2 in [11]], i.e., a nonzero Π ∈ cl ∑N

k=1 Πk,∆ exists such
that
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〈
Π , M×

H( jω)Z
〉

> 0, ∀Z ∈ Z⌋⊣l
⇔

〈
MH( jω)Π , Z

〉
> 0, ∀Z ∈ Z⌋⊣l

⇔ MH( jω)Π ≻ 0.

Since the inequality is strict it follows that for each ω ∈ R∪{∞} there exists Π ∈
∑N

k=1 Πk,∆ ( jω) such that MH( jω)Π ≻ 0.
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Chapter 2
Optimal Controller Synthesis for a
Decentralized Two-Player Linear-Quadratic
Regulator via Spectral Factorization

John Swigart and Sanjay Lall

Abstract We develop controller synthesis algorithms for decentralized control
problems. The particular system considered here consists of two interconnected lin-
ear subsystems, with communication allowed in only one direction. We develop the
concept of spectral factorization, which is the approach used to construct the opti-
mal controllers. Explicit state-space formulae are provided, and we show that each
player has to do more than simply estimate the states that they cannot observe. In
other words, the simplest separation principle does not hold for this decentralized
control problem. Some intuition into the control policies is provided, and the order
of the optimal controllers is established.

2.1 Introduction

Decentralized systems, consisting of multiple subsystems interacting over a net-
work with limited communication, are important in many practical problems today.
Examples include formation flight, teams of vehicles, or large spatially distributed
systems such as the Internet or the power grid.

With the advent of the elegant solution for the centralized control problem, it was
generally believed that decentralized problems would have similarly clean solutions.
Unfortunately, a simple counterexample disproved this notion, showing linear con-
trol policies may be strictly suboptimal, even when the underlying system dynamics
are linear and time-invariant [28]. In general, decentralized control problems are
currently intractable [2].

This chapter focuses on a specific information structure, consisting of two in-
terconnected systems with dynamics such that player 1’s state affects the state of
player 2. Our objective is to find a pair of controllers such that player 1 has access

J. Swigart and S. Lall
Department of Aeronautics and Astronautics, Stanford University, Stanford, CA 94305, USA.
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only to the first state, whereas player 2 can measure both states. The controller is
chosen to minimize the H2 norm of the closed-loop transfer function. This system
can be visualized by the simple graph in Fig. 2.1. It has been shown, in a number of

1 2

Fig. 2.1 Two-player system.

different ways, that this problem admits linear optimal controllers. Typically, these
results reduce the problem to one of convex optimization [26, 6, 17, 18]. Though
convex, these formulations remain infinite-dimensional. In particular, the approach
in [18] uses a change of variables via the standard Youla parameterization, and op-
timization over this parameter. Since the parameter itself is a linear stable system,
a standard approximation would be via a finite basis for the impulse response func-
tion [3]. This is in contrast to the centralized case, for which explicit state-space
formulae can be constructed.

The work presented in this chapter is based on recent work in [23, 22, 25]. In [23],
explicit formulae for the optimal controllers were constructed for the finite-horizon,
time-varying version of this problem. A dynamic programming approach was taken
in [22]. Since the approach used here is based on spectral factorization, we begin
our results by developing the method for the centralized case. The work presented
here focuses on the infinite-horizonH2 version of the problem.

We show that both controllers separate naturally into a composition of controller
and estimator. Moreover, each controller has the same number of states as player 2.
Such formulae offer the practical advantages of computational reliability and sim-
plicity. In addition, it provides significant understanding and interpretation of the
optimal controller structure. Lastly, it establishes the order of the optimal controller
for this system, which is an open problem for general decentralized systems, even
in the simplest cases.

The advantage of the spectral factorization methods used here is that they extend
naturally to more general networks, and the results in this chapter are a first step
towards general state-space solutions.

Previous Work

Some classic results in decentralized control can be found in [27, 7, 11]. As noted
above, the general decentralized problem remains intractable. Consequently, most
work in this area has been directed at classifying those systems that can be refor-
mulated as convex problems [6, 10, 12, 1]. These results were recently unified and
generalized under the concept of quadratic invariance [17]. For distributed systems
over networks, conditions for quadratic invariance, and thus tractability, of such sys-
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tems were provided in [24, 16]. In [20], a poset-based framework was used to obtain
similar results.

In terms of controller synthesis, different approaches have been used to find
numerical solutions to some of these problems. Some methods were considered,
though not implemented, in [26]. A semidefinite programming (SDP) solution for
the problem considered here was provided in [19]. Other SDP approaches were
presented in [13, 30]. In [5], an approximation scheme for solving decentralized
control problems was suggested. For the quadratic case, a vectorization approach
can be used to obtain a finite-dimensional problem [18], but this loses the intrinsic
structure and results in high-order controllers.

However, in none of these approaches have explicit state-space formulae been de-
rived for this problem. In the work presented here, a spectral factorization approach
is taken to construct explicit state-space formulae for the two-player problem. As a
result, we can efficiently and analytically compute the optimal controllers for this
decentralized problem. Moreover, we gain significant insight into the form of the
solution which previous approaches do not provide.

2.2 Problem Formulation

We use the following notation in this chapter. The real and complex numbers are
denoted by R and C, respectively. The complex open unit disc is D; its boundary,
the unit circle, is T; and the closed unit disc is D̄. The set L2(T) is the Hilbert space
of Lebesgue measurable functions on T, which are square integrable, with inner
product

〈F,G〉= 1
2π

∫ 2π

0
tr(F∗(e jθ )G(e jθ )) dθ

As is standard,H2 denotes the Hardy space

H2 =

{
f : {∞}∪C\ D̄→ C

∣∣∣ ∃x ∈ ℓ2(Z+) s.t. f (z) =
∞
∑
k=0

xkz−k
}

of functions analytic outside the closed unit disc, and at infinity, with square-
summable power series. The set H⊥

2 is the orthogonal complement of H2 in L2.
The prefix R indicates the subsets of proper real rational functions. That is, RL2

is the set of transfer functions with no poles on T, and RH2 is the set of transfer
functions with no poles outside T.

Also, we denote the subspace L∞(T) as the set of Lebesgue measurable func-
tions which are bounded on T. Similarly,H∞ is the subspace of L∞ with functions
analytic outside of T, andH−

∞ is the subspace of L∞ with functions analytic inside
T. Consequently,RH∞ is the set of transfer functions with no poles outside of T.
Note that, in this case,RH2 =RH∞; we will use these spaces interchangeably.

Some useful facts about these sets which we will take advantage of in this work
are [31]:
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• if G ∈ L∞, then GL2 ⊂ L2,
• if G ∈H∞, then GH2 ⊂H2,
• if G ∈H−

∞, then GH⊥
2 ⊂H⊥

2 .

For any F ∈RL∞, we define F∼ ∈RL∞ as

F∼(z) = FT (z−1)

It is straightforward to see that the multiplication operator corresponding to F∼

is the adjoint of the multiplication operator defined by F . For transfer functions
F ∈RL2, we use the notation

F(z) =


 A B

C D


= C(zI−A)−1B +D

We are interested in the following discrete time state-space system
[

x1(t + 1)

x2(t + 1)

]
=

[
A11 0

A21 A22

][
x1(t)
x2(t)

]
+

[
B11 0

B21 B22

][
u1(t)
u2(t)

]
+

[
H1 0

0 H2

][
w1(t)
w2(t)

]
(2.1)

This corresponds to a two-player system, in which player 1’s state can influence
player 2’s state. We are interested in finding controllers of the form

q1(t +1) = AK1q1(t)+ BK1x1(t)

u1(t) = CK1q1(t)+ DK1x1(t)

and

q2(t + 1) = AK2q2(t)+ BK2x(t)

u2(t) = CK2q2(t)+ DK2x(t)

That is, player 1 makes decision u1 based only on the history of his own state x1,
while player 2 makes decision u2 based on the history of both states x1 and x2. This
controller can be represented by the transfer functions K11,K21,K22 ∈RL∞, such
that [

u1

u2

]
=

[
K11 0

K21 K22

][
x1

x2

]

For a set S whose elements are partitioned as

F =

[
F11 F12

F21 F22

]

for all F ∈ S, we define lower(S) to be the subset of S consisting of elements with
lower triangular structure. In other words, F ∈ lower(S) if and only if F ∈ S and
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F =

[
F11 0

F21 F22

]

In particular, our desired controllers are in the set K ∈ lower(RL∞).
Note that the space S = lower(RH2)⊂ L2 has an orthogonal complement, such

that G ∈ S⊥ if and only if G11,G21,G22 ∈ H⊥
2 and G12 ∈ L2. We will also define

PH2 : L2→H2 as the orthogonal projection ontoH2. Similarly, PS : L2→ S is the
orthogonal projection onto S.

Our cost is the vector

z(t) =
[
C1 C2

][x1(t)

x2(t)

]
+
[
D1 D2

][u1(t)

u2(t)

]

where, for simplicity, we will assume that CT D = 0 and DT D > 0. Notice that this
formulation allows for coupling of the states in the cost. Consequently, our plant can
be expressed as the matrix P ∈RL∞, where

[
z
x

]
=

[
P11 P12

P21 P22

][
w
u

]

and

P =

[
C
I

]
(zI−A)−1

[
H B

]
+

[
0 D
0 0

]
(2.2)

where A and B are lower triangular, and H is block diagonal and invertible, as de-
fined in (2.1). Note that H being invertible simply implies that no component of the
state is deterministic. This assumption merely simplifies our presentation while not
fundamentally affecting our results.

We define F(P,K) as the linear fractional transformation

F(P,K) = P11 +P12K(I−P22K)−1P21

Our objective function is the H2 norm of the closed-loop transfer function from w
to z. In other words, we have the following optimization problem:

minimize ‖F(P,K)‖2

subject to K is stabilizing

K ∈ lower(RL∞)

(2.3)
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2.3 Main Results

Having established our notation and problem formulation, we now present the op-
timal solution for (2.3). We will develop the proof for this result in the following
sections.

Theorem 2.1. For the system in (2.2), suppose CT D = 0 and DT D > 0. Suppose
(A11,B11) and (A22,B22) are stabilizable. Also, suppose there exist stabilizing solu-
tions X and Y to the algebraic Riccati equations

X = CTC +AT XA−AT XB(DT D+BT XB)−1BT XA (2.4)

Y = CT
2 C2 +AT

22YA22−AT
22YB22(D

T
2 D2 +BT

22YB22)
−1BT

22YA22 (2.5)

Define

K = (DT D+ BT XB)−1BT XA

J = (DT
2 D2 + BT

22Y B22)
−1BT

22YA22

and let

AK = A22−B21K12−B22K22

BK = A21−B21K11−B22K21

Then, there exists a unique optimal K ∈ lower(RL∞) for (2.3) given by:

• Controller 1 has realization

q1(t + 1) = AKq1(t)+ BKx1(t)

u1(t) =−K12q1(t)−K11x1(t)

• Controller 2 has realization

q2(t + 1) = AKq2(t)+ BKx1(t)

u2(t) =
(
J−K22

)
q2(t)−K21x1(t)− Jx2(t)

Note that there may not always exist stabilizing solutions to the algebraic Ric-
cati equations (2.4–2.5). To simplify our results and avoid confusing the presen-
tation with additional technical assumptions, we will simply assume the existence
of stabilizing solutions. For a thorough discussion on algebraic Riccati equations,
see [31].
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2.4 Analysis

Before trying to find the optimal controllers, it is important we note when stabiliza-
tion is even possible. The following lemma provides the necessary and sufficient
conditions for the existence of any stabilizing controller.

Lemma 2.1. There exists a controller K ∈ lower(RL∞) which stabilizes P in (2.2)
if and only if (A11,B11) is stabilizable and (A22,B22) is stabilizable.

Proof. (⇒) If (A11,B11) and (A22,B22) are stabilizable, then there exist matrices
F1 and F2 such that A11 +B11F1 and A22 +B22F2 are stable. Consequently, the con-
troller

K=

[
F1 0

0 F2

]

produces the closed-loop system
[

x1(t + 1)

x2(t + 1)

]
=

[
A11 +B11F1 0

A21 +B21F1 A22 + B22F2

][
x1(t)
x2(t)

]

which is clearly stable.
(⇐) Suppose that (A11,B11) is not stabilizable. Then, there exists a transforma-

tion U such that

U−1A11U =

[
a11 a12

0 a22

]
, U−1B11 =

[
b1

0

]
,

where a22 has at least one unstable eigenvalue λ . Let v be the corresponding eigen-
vector of a22, so that a22v = λv. Then, it can be readily shown that with the initial
condition

x1(0) = U

[
0

v

]

the state x1(t) 9 0 as t→∞ for any inputs u. A similar argument holds for the case
where (A22,B22) is not stabilizable. ⊓⊔

Thus, Lemma 2.1 shows that the two-player system can be stabilized if and only
if each individual subsystem can be stabilized.

When the system can be stabilized, by choosing stabilizing matrices F1 and F2,
we can use the standard Youla parametrization to simplify our optimization prob-
lem [29, 4].

Lemma 2.2. Let S = lower(RH2). Suppose (A11,B11) and (A22,B22) are stabiliz-
able, and let F1 and F2 be matrices, such that A11 + B11F1 and A22 + B22F2 have
stable eigenvalues. Let

F =

[
F1 0

0 F2

]
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P

K

x u

wz

⇐⇒

P

F

−F

K

x v

+

+

wz

T

R

Fig. 2.2 Equivalent feedback systems.

Then, the set of all stabilizing controllers K ∈ lower(RL∞) is parametrized by

K= Q(I + MQ)−1 +F, Q ∈ S,

where

M =



 A+ BF B

I 0





Moreover, the set of stable closed-loop transfer functions satisfies

{F(P,K) | K ∈ lower(RL∞), K stabilizing}= {N11 +N12QN21 |Q ∈ S}

where N12 = z−1((C +DF)(zI− (A+ BF))−1B+ D) and

[
N11

N21

]
=




A +BF H

C +DF
A+ BF

0

H




Proof. Notice in Fig. 2.2 that we can create an equivalent feedback system by
adding and subtracting the gain F. However, in doing so we can create a new feed-
back system with

F(T,R) = F(P,K)

where
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T =




A+ BF H B

C + DF

I

0 D

0 0


 R =K−F

Let us now define
Q = R(I−T22R)−1

Notice that the map R 7→Q is bijective. As a result, we now have

F(T,R) = T11 +T12QT21

Now, suppose Q ∈ S. Since T and Q are stable, then the closed-loop map is stable.
In addition, since both T22 and Q are lower triangular, then R is lower triangular,
where

R = Q(I + T22Q)−1

Thus,
K= R+ F = Q(I + T22Q)−1 + F ∈ lower(RL∞)

and K stabilizes P. As a result, we have

{T11 +T12QT21 |Q ∈ S} ⊂ {F(P,K) | K ∈ lower(RL∞), K stabilizing}

Conversely, suppose that K ∈ lower(RL∞) stabilizes P. This implies that
[

A +BDK BCK

BK AK

]

is stable. Thus, letting R =K−F ∈ lower(RL∞), we can show that

Q = R(I−T22R)−1 =




A+ BDK BCK

BK AK

B(DK−F)

BK

DK−F CK DK−F




Consequently, we see that Q is stable. Moreover, since T22 and R are lower triangu-
lar, so is Q. Hence, Q ∈ S. Thus, we’ve shown that

{T11 +T12QT21 |Q ∈ S}= {F(P,K) | K ∈ lower(RL∞), K stabilizing}

Thus, the result follows by letting
[

N11 N12

N21 M

]
=

[
T11 z−1T12

zT21 T22

]

⊓⊔
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As in the classical case, the Youla parametrization translates the difficult optimiza-
tion problem (2.3) into an affine optimization problem. Since we have state feedback
in our problem, we can simplify the problem even further.

Lemma 2.3. For the system in (2.2), let N be defined as in Lemma 2.2. Suppose Q
is optimal for

minimize ‖N11 +N12Q‖2

subject to Q ∈ S
(2.6)

Then, there exists Q̂ ∈ S such that Q = Q̂N21, and Q̂ is optimal for

minimize ‖N11 +N12Q̂N21‖2

subject to Q̂ ∈ S
(2.7)

Conversely, if Q̂ ∈ S is optimal for (2.7), then Q = Q̂N21 is optimal for (2.6).

Proof. This follows from the fact that N21,N
−1
21 ∈ S, so that Q ∈ S if and only if

Q̂ ∈ S. ⊓⊔
In order to solve the optimization problem in (2.6), it is convenient to find an

equivalent optimality condition, which the following lemma provides.

Lemma 2.4. Let S = lower(RH2). Suppose U,G ∈RH∞. Then, Q ∈ S minimizes

minimize ‖U +GQ‖2

subject to Q ∈ S

if and only if

G∗U +G∗GQ ∈ S⊥ (2.8)

Proof. This result is a version of the classical projection theorem; see for exam-
ple [8]. We first show that if Q0 ∈ S is a minimizer of ‖U +GQ‖2, then Q0 satis-
fies (2.8). Suppose, to the contrary, that there exists Γ ∈ S such that

〈Γ ,G∗U + G∗GQ0〉= δ 6= 0

We assume, without loss of generality, that ‖Γ‖= 1/‖G‖. Then, letting Q1 = Q0−
δΓ , we have

‖U +GQ1‖2
2 = ‖U +GQ0− δGΓ ‖2

2

= ‖U +GQ0‖2
2−〈U + GQ0,δGΓ 〉− 〈δGΓ ,U +GQ0〉+ |δ |2‖GΓ ‖2

2

= ‖U +GQ0‖2
2−2δ Re〈G∗U + G∗GQ0,Γ 〉+ |δ |2‖GΓ‖2

2

= ‖U +GQ0‖2
2−2|δ |2 + |δ |2‖GΓ‖2

2

≤ ‖U +GQ0‖2
2−|δ |2

< ‖U +GQ0‖2
2
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Thus, if Q0 ∈ S does not satisfy (2.8), then Q0 is not a minimizer.
Conversely, suppose that Q0 ∈ S satisfies (2.8). Then, for any Q ∈ S, we have

‖U + GQ‖2
2 = ‖U + GQ0 +G(Q−Q0)‖2

2

= ‖U + GQ0‖2
2 + 〈U +GQ0,G(Q−Q0)〉

+ 〈G(Q−Q0),U + GQ0〉+ ‖G(Q−Q0)‖2
2

= ‖U + GQ0‖2
2 +2Re〈Q−Q0,G

∗U + G∗GQ0〉+‖G(Q−Q0)‖2
2

Since S is a subspace, then Q−Q0 ∈ S. As a result, the above inner product term is
zero, so we have

‖U +GQ‖2
2 = ‖U +GQ0‖2

2 + ‖G(Q−Q0)‖2
2

Thus, Q = Q0 is a minimizer. ⊓⊔
While Lemma 2.4 provides necessary and sufficient conditions for optimality of

a controller, it does not guarantee existence of such a controller. The existence of an
optimal controller will be shown by explicit construction in the following sections.

2.5 Spectral Factorization

The optimality condition (2.8) could be equivalently written as

G∗U + G∗GQ = Λ (2.9)

where Λ ∈ S⊥. It is important to note here that Q and Λ are orthogonal, that they
possess complementary structures. However, as it is currently written, the G∗G op-
erator is coupling these terms and making a solution difficult to find.

Before we embark on solving our two-player problem, it is necessary to first
understand the approach taken in the classical case; that is, when S = RH2. We
assume the classical case, S =RH2, throughout this section.

2.5.1 Finite Horizon Case

Perhaps the clearest way to understand our approach is to consider the finite horizon
version of the problem. In this case, Q is a real block lower triangular matrix and Λ
is a strictly block upper triangular matrix. Visually, Eq. (2.9) looks like

[ ]

︸ ︷︷ ︸
GT U

+

[ ]

︸ ︷︷ ︸
GT G

[ ]

︸ ︷︷ ︸
Q

=

[ ]

︸ ︷︷ ︸
Λ

(2.10)
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The difficulty again is that GT G is a full matrix, which ruins the triangular structure
of Q. However, since GT G > 0, it is well-known that a Cholesky factorization exists
which decomposes GT G into the product of an invertible upper triangular matrix
and an invertible lower triangular matrix. In particular,

GT G = LT L

where L is lower triangular and invertible. With this factorization, the optimality
condition is equivalent to

L−T GTU + LQ = L−T Λ

Since the set of lower triangular matrices is invariant under addition and multiplica-
tion (similarly for upper triangular matrices), notice now that the term LQ remains
lower triangular, while the L−T Λ term is still strictly upper triangular. Thus, our
factorization has succeeded in decoupling our variables, so that they may be solved
independently. In other words, if we consider only the lower triangular elements of
the above optimality condition, we obtain

PLower(L−T GTU)+ LQ = 0

where PLower is the orthogonal projection onto the set of lower triangular matrices.
Solving for Q is now straightforward.

2.5.2 Scalar Transfer Functions

While the infinite horizon/transfer function version of this problem is more compli-
cated, the basic idea remains the same. Since Q is a stable transfer function and Λ
is an anti-stable transfer function, our goal is again to factor the G∗G term into the
product of a stable transfer function, with stable inverse, and an anti-stable transfer
function, with anti-stable inverse. This is known as spectral factorization, since the
terms stable/anti-stable are references to the spectrum of the operators. The results
of this section follow from [14, 15].

To begin our discussion of spectral factorization, we first consider the case of
trigonometric polynomials. A trigonometric polynomial is a rational function of the
form

f (z) =
n

∑
k=−n

ckzk

It is straightforward to show that f (z) is real for all z ∈ T if and only if

ck = c−k

for all k. Consequently, if f (z) is real, then
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f

(
1
z

)
= f (z)

for all z ∈C, so that r is a root of f if and only if 1/r is a root. Notice that if |r|< 1,
then | 1r | > 1, so that f has an equal number of stable and unstable roots. Spectral
factorization of f takes advantage of this fact, as seen in the following theorem.

Theorem 2.2. Suppose f is the trigonometric polynomial

f (z) =
n

∑
k=−n

ckzk

and f (z) is real for all z ∈ T. Then,

f (z) ≥ 0 for all z ∈ T

if and only if there exists a polynomial

q(z) = a(z− r1) . . . (z− rn)

with all |ri| ≤ 1 such that
f (z) = q∼(z)q(z)

Proof. Clearly, if there exists such a polynomial q, then for all z ∈ T,

f (z) = q∼(z)q(z) = |a|2|z− r1|2 . . . |z− rn|2 ≥ 0

Conversely, suppose that f (z) is nonnegative for all z∈T. Without loss of generality,
we assume that c−n 6= 0, and let p be the polynomial

p(z) = zn f (z)

Since p is a polynomial of degree 2n, it has 2n nonzero roots, and we can factorize
it as

p(z) = c
m

∏
i=1

(z− r−1
i )(z− ri)

s

∏
j=1

(z−w j)
2

where |ri| < 1 and |w j| = 1. Note that ri and r−1
i are both roots since f is non-

negative on T. Since f is also continuous on T, then each root w j ∈ T must have
even multiplicity. Consequently, f may be written as

f (z) = d
m

∏
i=1

(z−1− ri)(z− ri)
s

∏
j=1

(z−1−w j)(z−w j)

where d > 0, since each pair of terms above is nonnegative on T. Thus, letting

q(z) =
√

d
m

∏
i=1

(z− ri)
s

∏
j=1

(z−w j)
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we obtain our desired factorization. ⊓⊔
While the above theorem, also known as Wiener-Hopf factorization, applies to
trigonometric polynomials, the extension to scalar rational transfer functions is
straightforward, as the following theorem demonstrates.

Theorem 2.3. Suppose g ∈ RH∞, with no poles or zeros on T. Then, there exists
l ∈RH∞ such that

g∗g = l∗l

and l−1 ∈RH∞.

Proof. We can write

g(z) =
a(z)
b(z)

where a and b are polynomials. Consequently, we have

g∼(z)g(z) =
a∼(z)a(z)
b∼(z)b(z)

Using Theorem 2.2, we can find spectral factors for both the numerator and denom-
inator, so that

a∼(z)a(z) = α∼(z)α(z)

b∼(z)b(z) = β∼(z)β (z)

where α and β are the same order and have all their roots in D. Consequently, we
let

l(z) =
α(z)
β(z)

Then, g∗g = l∗l, and l has all its poles and zeros in D, so that l, l−1 ∈RH∞. ⊓⊔
With this result, we can extend our previous discussion on solving the optimality

condition (2.8) to the case of scalar transfer functions. Specifically, suppose that

G(z) =
a(z)
b(z)

, U(z) =
c(z)
d(z)

Then, to solve (2.9), we can find a spectral factorization

L∗L = G∗G

such that L,L−1 ∈RH∞. Suppose that

L(z) =
α(z)
β (z)

Then, since L is invertible, the optimality condition is equivalent to

40 J. Swigart and S. Lall
     irmgn.ir



L−∗G∗U +LQ = L−∗Λ

Once again, since LQ ∈ RH2 and L−∗Λ ∈ H⊥
2 , we can decouple these terms and

solve directly for LQ. To this end, we have

PH2(L
−∗G∗U)+ LQ = 0

To determine PH2(·), the projection of the first term ontoH2, we can write this term
as

L−∗G∗U =
β ∼(z)a∼(z)c(z)
α∼(z)b∼(z)d(z)

Using a partial fraction decomposition of this term will allow us to write it as the
sum of a stable transfer function and an anti-stable transfer function:

L−∗G∗U =
ns(z)
ds(z)

+
na(z)
da(z)

,
ns(z)
ds(z)

∈H2,
na(z)
da(z)

∈H⊥
2

Thus, the projection onto H2 is simply the stable term. Lastly, since L−1 ∈ RH∞,
then the solution for Q ∈RH∞ is

Q =−L−1PH2(L
−∗G∗U) =−β(z)ns(z)

α(z)ds(z)

2.5.3 Matrix Transfer Functions

We are now ready to discuss the general form of (2.8), when U and G are matrix
transfer functions. Once again, the approach taken here is very similar to our previ-
ous discussions. However, finding the spectral factorization of G∗G is considerably
more complicated than it is in the scalar case. Unfortunately, a full development of
the spectral factorization results for this case would take us too far afield. However,
the results can be shown by straightforward algebraic manipulations.

Lemma 2.5. Suppose U,G ∈RH∞ have the realizations

U = C(zI−A)−1H

G = z−1(C(zI−A)−1B+ D)

Suppose there exists a stabilizing solution X to the algebraic Riccati equation

X = CTC +AT XA− (AT XB +CT D)(DT D+BT XB)−1(BT XA+DTC)

Let W = DT D+BT XB and K = W−1(BT XA+DTC) and L ∈RH∞ satisfying
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L =



 A B

W 1/2K W 1/2





Then, L−1 ∈RH∞, L−∗ ∈H−
∞, and

L∗L = G∗G

Moreover,

L−∗G∗U = W−1/2BT (z−1I− (A−BK)T)−1XH + zW 1/2K(zI−A)−1H

Proof. This result follows from algebraic manipulations of the Riccati equation. A
simple proof follows the approach in [9]. ⊓⊔

With the above spectral factorization, we can now solve the optimality condi-
tion (2.9) in the general matrix transfer function case.

Lemma 2.6. Let U,G ∈ RH∞ be defined as in Lemma 2.5. Suppose there exists a
stabilizing solution X to the algebraic Riccati equation

X = CTC +AT XA− (AT XB +CT D)(DT D+BT XB)−1(BT XA+DTC)

Let K and L be defined as in Lemma 2.5. Then, the unique Q ∈RH∞ satisfying

G∗U +G∗GQ ∈H⊥
2

is given by
Q =−zK(zI− (A−BK))−1H

Proof. From Lemma 2.5, we have the spectral factorization G∗G = L∗L. Since we
showed that L−∗ ∈ H−

∞, then L−∗H⊥
2 ⊂ H⊥

2 . Hence, the optimality condition is
equivalent to

L−∗G∗U + LQ ∈H⊥
2

Since LQ ∈RH2, we can project the optimality condition ontoH2 to obtain

PH2(L
−∗G∗U)+ LQ = 0

From Lemma 2.5, we have

PH2(L
−∗G∗U) = zW 1/2K(zI−A)−1H

Consequently, we have

Q =−L−1PH2(L
−∗G∗U)

=−zK(zI− (A−BK))−1H
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⊓⊔
This completes our discussion of the classical case; that is, when S =RH2. As we
will show in the next section, the solution of the two-player problem relies on the
spectral factorization approach that was developed for the classical case.

2.6 Two-Player Solution

We turn back now to the two-player system in (2.3). Our goal is now to find a
solution Q ∈ lower(RH2) that satisfies the optimality condition (2.8). To this end,
we have the following result.

Lemma 2.7. Let S = lower(RH2), and suppose U,G∈RH∞. Then, Q∈ S satisfies

G∗U +G∗GQ ∈ S⊥

if and only if both following two conditions hold:

i) (G∗U)22 +(G∗G)22Q22 ∈H⊥
2 ;

ii)

[
(G∗U)11

(G∗U)21

]
+G∗G

[
Q11

Q21

]
∈H⊥

2 .

Proof. Let G∗U +G∗GQ = Λ where Λ ∈ S⊥. Note that Λ is partitioned as

Λ =

[
Λ11 Λ12

Λ21 Λ22

]

where Λ11,Λ21,Λ22 ∈ H⊥
2 . Consequently, (i) comes from the fact that Λ22 ∈ H⊥

2 ,
and (ii) because [

Λ11

Λ21

]
∈H⊥

2

⊓⊔
The important aspect of Lemma 2.7 is that it decomposes our optimality condi-
tion (2.8) over S⊥ into two separate conditions over H⊥

2 . Each of these conditions
can be solved via the spectral factorization approach of Lemmas 2.5 and 2.6.

If we now want to apply this spectral factorization approach to our problem,
our Riccati equations would be in terms of the precompensator F. However, this
difficulty can be avoided if we apply the following result.

Lemma 2.8. Let AF = A +BF and CF = C +DF. Then, X is a stabilizing solution
of the algebraic Riccati equation

X = CTC +AT XA− (AT XB +CT D)(DT D+BT XB)−1(BT XA+DTC)
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if and only if X is a stabilizing solution of the algebraic Riccati equation

X = CT
FCF +AT

FXAF− (AT
FXB +CT

F D)(DT D+ BT XB)−1(BT XAF + DTCF )

for any matrix F.

Proof. By substitution of AF and CF , it can be readily shown that the two Riccati
equations are equivalent. ⊓⊔

Thus, our ability to solve the optimality condition (2.8) is independent of our
choice of the precompensator F.

For convenience, we define

E1 =

[
I
0

]
, E2 =

[
0

I

]
,

where the dimensions are defined by the context. We can now solve for the Q ∈ S
satisfying the optimality condition (2.8)

Lemma 2.9. For the system in (2.2), suppose CT D = 0 and DT D > 0. Suppose
(A11,B11) and (A22,B22) are stabilizable, and let F1,F2 be matrices such that
A11 + B11F1 and A22 + B22F2 have stable eigenvalues. Furthermore, suppose there
exist stabilizing solutions X and Y to the algebraic Riccati equations

X = CTC +AT XA−AT XB(DT D+BT XB)−1BT XA (2.11)

Y = CT
2 C2 +AT

22YA22−AT
22YB22(D

T
2 D2 +BT

22Y B22)
−1BT

22YA22 (2.12)

Define

K = (DT D+ BT XB)−1BT XA (2.13)

J = (DT
2 D2 + BT

22Y B22)
−1BT

22YA22 (2.14)

and let

AF = A +BF

AK = A−BK

AJ = A22−B22J

Finally, let N11 and N12 be defined as in Lemma 2.2. Then, the unique optimal Q ∈ S
for (2.6) is given by
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Q22 =



 AJ AJH2

−J−F2 −(J +F2)H2



 (2.15)

[
Q11

Q21

]
=



 AK AKE1H1

−K−F −(K +F)E1H1



 (2.16)

Proof. From Lemma 2.4, we know that the optimal Q ∈ S for (2.6) satisfies the
optimality condition (2.8). Using Lemma 2.7, this can be solved as two separate
problems. Condition (i) of the lemma can be solved via Lemma 2.6, where

U = (C2 + D2F2)(zI− (AF)22)
−1H2

G = z−1 ((C2 + D2F2)(zI− (AF)22)
−1B22 + D2

)

to obtain the optimal Q22 in (2.15). Note that (2.12) and Lemma 2.8 imply the exis-
tence of the required algebraic Riccati equation needed in Lemma 2.6, for whatever
stabilizing F is chosen. A similar argument is used to solve for Q11 and Q21 in con-
dition (ii) of Lemma 2.7, via Lemma 2.6, where we let U = N11E1 and G = N12. ⊓⊔

With the optimal Q ∈ S obtained in Lemma 2.9, the optimal controller for our
decentralized problem in (2.3) can be found with the following result.

Theorem 2.4. For the system in (2.2), suppose the conditions of Lemma 2.9 hold,
with X ,Y,K,J defined by the Riccati equations (2.11–2.14). Let AK = A−BK. Then,
the unique optimalK ∈ lower(RL∞) for (2.3) is

K =

[
−K11−K12Φ 0

−K21− (K22− J)Φ −J

]
(2.17)

where
Φ = (zI− (AK)22)

−1(AK)21

Proof. From Lemma 2.9, the unique optimal Q ∈ S for (2.6) is given by (2.15)
and (2.16). Lemma 2.3 then implies that Q̂ = QN−1

21 is optimal for (2.7), where N21

is defined in Lemma 2.2. Using Lemma 2.2, the unique optimal K for (2.3) is given
by

K = Q̂(I +MQ̂)−1 +F

with M defined in the lemma, and the result follows. ⊓⊔
Proof of Theorem 2.1. The result follows directly from Theorem 2.4, where we let

AK = (AK)22 = A22−B21K12−B22K22

BK = (AK)21 = A21−B21K11−B22K21
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2.7 Estimation Structure

Notice that the solution in (2.17) is given in terms of the transfer function Φ . While
this answer is sufficient to run the controller in practice, we can obtain some addi-
tional insight to the optimal policy by further analysis. Accordingly, we let

η = Φx1

This represents the following state-space system:

η(t +1) = (AK)22η(t)+ (AK)21x1(t)

with the initial condition η(0) = 0. Consequently, the optimal policy can be written
as

[
u1(t)
u2(t)

]
=−

[
K11 0 K12

K21 J K22− J

]


x1(t)
x2(t)
η(t)




Combining this with the dynamics in (2.1), it is straightforward to show that the
closed-loop dynamics of the overall system become



x1(t +1)

η(t + 1)

x2(t +1)


=



(AK)11 (AK)12 0

(AK)21 (AK)22 0

(AK)21 (AK)22−AJ AJ







x1(t)

η(t)
x2(t)


+




H1 0

0 0

0 H2




[
w1(t)

w2(t)

]

(2.18)
With this system in mind, we now attempt to construct the minimum-mean

square error estimator of x2(t) based on measurements of x1(0), . . . ,x1(t) and
η(0), . . . ,η(t). This is given by the conditional mean

E
(
x2(t) | x1(0), . . . ,x1(t),η(0), . . . ,η(t)

)

To this end, we have the following lemma.

Lemma 2.10. Suppose x1, x2 represent the state of the following autonomous system
driven by noise

[
x1(t +1)

x2(t +1)

]
=

[
A11 0

A21 A22

][
x1(t)

x2(t)

]
+

[
w1(t)

w2(t)

]
(2.19)

where x1(0),x2(0),w1(t),w2(t) are independent, zero-mean random variables for
all t ≥ 0. Define µ t such that

µ t(z0, . . . ,zt) = E
(
x2(t) | x1(0) = z0, . . . ,x1(t) = z t

)

Then, µ0(z0) = 0, and for each t ≥ 0,

46 J. Swigart and S. Lall
     irmgn.ir



µt+1(z0, . . . ,zt+1) = A22µt + A21z t

Proof. For each t, let qt be the conditional probability density function

qt(y) = px2(t)|x1(0)···x1(t)(y)

so that µt is the mean of this distribution. Since x1(0) and x2(0) are independent,
then clearly µ0(z0) = 0.

Now, using our definition for qt+1 and Bayes’ law, we can show that

qt+1(y) =
∫

v
gx2(t+1)|x1(t)x2(t)(y) qt(v) dv

where gx2(t+1)|x1(t)x2(t) is the transition pdf of x2 defined by (2.19). Consequently, we
can recursively compute the mean µ t+1 as

µ t+1(z0, . . . ,zt+1) = A22µ t(z0, . . . ,zt)+ A21z t

The result follows by induction. ⊓⊔
With Lemma 2.10, a very simple representation for the optimal controller can be

obtained.

Theorem 2.5. Suppose x1, x2, η are the states of the autonomous system in (2.18).
Then,

η(t) = E
(
x2(t) | x1(0), . . . ,x1(t)

)

Proof. From (2.18), we see that the state transition matrix is lower triangular. Thus,
we can use the results of Lemma 2.10 to get

µ t+1 = E
(
x2(t +1) | x1(0), . . . ,x1(t +1),η(0), . . . ,η(t +1)

)

= AJµ t +
[
(AK)21 (AK)22−AJ

][x1(t)
η(t)

]

= η(t + 1)+ AJ
(
µt −η(t)

)

where we have used the definition of η(t + 1) in the last expression. Now, since
µ0 = η(0) = 0, we inductively see that µ(t) = η(t) for all t ≥ 0. Lastly, since η(t)
can be deterministically computed given x1(0), . . . ,x1(t), we have

η(t) = E
(
x2(t) | x1(0), . . . ,x1(t),η(0), . . . ,η(t)

)

= E
(
x2(t) | x1(0), . . . ,x1(t)

)

as desired. ⊓⊔
Having established the form of the optimal controller, a number of remarks are

in order.
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We have shown that the optimal controllers are in terms of the minimum-mean
square error estimate of x2 given the history of x1. In other words, letting η(t) =
E
(
x2(t) | x1(0), . . . ,x1(t)

)
, the optimal control policy can be written as

u1(t) =−K11x1(t)−K12η(t)

u2(t) =−K21x1(t)−K22η(t)+ J
(
η(t)− x2(t)

) (2.20)

Thus, the optimal policy is, in fact, attempting to perform the optimal centralized
policy, though using η instead of x2. However, there is an additional term in u2

which represents the error between x2 and its estimate η . We also see that in the
case where x2 is deterministic, so that η = x2, then the optimal distributed controller
reduces to the optimal centralized solution, as it should.

In addition, with the inclusion of η , the optimal controller is not a static gain,
despite the fact that we have state feedback in each subsystem and player 2 has
complete state information. Contrast this result with the classical LQR controller in
which the optimal centralized controller would be the static gain K. In fact, both
controllers have dynamics, and each has the same number of states as system 2.

2.8 Examples

We conclude our discussion of this two-player problem with a couple of examples.
In the first example, we compare the optimal decentralized policy with a standard
heuristic. The second example compares the centralized and decentralized policies
for a particular system.

2.8.1 A Standard Heuristic

It is worth comparing the optimal decentralized solution that was obtained in (2.20)
with a standard heuristic solution to this problem. To motivate the heuristic, con-
sider the classic centralized problem. In the state feedback case, it is known that the
optimal policy is the static gain

u(t) =−Kx(t)

where K is the same gain, given by (2.13) and the associated Riccati equation (2.11).
In this case, when the state is not known directly, but is instead measured via some
noisy output, then the optimal policy becomes

u(t) =−Kxest(t)
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where xest is the minimum mean square error estimate of x. In other words, the state
x is replaced by its estimate in the optimal policy. This is the certainty equivalence
principle for the classic LQG problem [31].

Following this logic, an intuitively reasonable heuristic policy for the two-player
problem here would be

u1(t) =−K11x1(t)−K12xest
2 (t)

u2(t) =−K21x1(t)−K22x2(t)

For this heuristic policy, since system 1 cannot directly measure state 2, it uses an
estimate of x2 based on the measurements of its own state; this matches the optimal
decentralized solution. Additionally, system 2 has complete state information, so it
should not need to estimate anything and uses the centralized LQR policy.

However, it turns out that this heuristic policy can perform arbitrarily poorly. To
see this, consider the simple two-player system with the following system matrices:

A =

[
0 0

0 2

]
, B =

[
0.1 0

1 1

]
, C =

[
I
0

]
, D =

[
0

I

]

As a result, the centralized gain is found to be

K ≈
[

0 −0.8

0 −0.8

]

For the heuristic approach, it is straightforward to show that the closed-loop dynam-
ics for player 2 evolve as

x2(t +1) = (2− 0.8)x2(t)

which is clearly unstable. Thus, the heuristic approach can destabilize a system.
The optimal decentralized solution given here provides the correct structure for

the optimal policy. While the motivation for the heuristic is reasonable and intuitive,
this intuition is misleading. A more accurate rationale for the optimal policy is that
player 2 must correct for errors that player 1 makes in estimation.

2.8.2 Decentralized Policy

For the second example, consider the following system of two decoupled masses.

A =




1 .05 0 0

0 1 0 0

0 0 1 .05

0 0 0 1


 B =

1
100
·




0.1 0

5 0

0 0.1

0 5


 H = 0.01 · I
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The cost objective has the form

100 · (x1− x2)
2 +0.001 · (x2

1 + x2
2 + ẋ2

1 + ẋ2
2)+ µ(u2

1 +u2
2)

Here, µ is a parameter that we will vary. Note that this cost penalizes the difference
between the two masses’ positions. We will use µ to trade-off the cost of error with
the control effort required. The second term above is simply a regularization term,
which drives the system back to zero.

Figure 2.3 shows the state trajectories in the case where µ = 0.01. Here, we
apply three impulses to the system: an impulse to system 1 at t = 50, an impulse to
system 2 at t = 200, and an impulse to both systems at t = 300. Notice the difference

0 50 100 150 200 250 300 350 400 450 500

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time

S
ta

te
s

 

 
x2
x2 − x1
x1

(a) Centralized

0 50 100 150 200 250 300 350 400 450 500

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time

S
ta

te
s

 

 
x2
x2 − x1
x1

(b) Decentralized.

Fig. 2.3 State trajectories.

between the two plots. For the centralized problem in Fig. 2.3(a), the trajectories
resulting from the first two impulses are very similar since both players can observe
the other’s change in position. At the last impulse again, they can observe both
impulses and move together.

Contrast this with the decentralized case in Fig. 2.3(b). For the first impulse,
since both systems can observe the change in system 1’s position, there is not much
difference between the centralized and decentralized cases. However, at the second
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impulse, only player 2 can observe the position error, so it must quickly return to
zero in order to avoid errors. At the third impulse, system 1 behaves as it did at the
first impulse; recognizing this, system 2 behaves to follow system 1. Consequently,
the first and third impulses result in very similar trajectories in the decentralized
case.

An alternate way to view the optimal decentralized policy is by looking at the
trade-off between position error and control authority as we vary µ . This is shown
in Fig. 2.4(a), and demonstrates that the optimal decentralized policy is not signifi-
cantly different from the centralized policy.
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Fig. 2.4 Controller effort.

Figure 2.4(b) shows the relative control effort for both players in the decentral-
ized policy. Notice that player 2 accounts for the vast majority of control authority
used, since it is responsible for more information.

2.9 Conclusion

In this chapter, we solved a decentralized, two-player control problem with a partic-
ular information structure. The development of this solution required a number of
steps. To begin, it was shown that stabilization of the whole system was possible if
and only if each of the individual subsystems could be stabilized. Using a particular
Youla parametrization for the optimization problem, we converted the problem into
a convex one. In contrast to other results for this problem which involve numerical
approximations or SDP methods, a spectral factorization approach was developed.
This approach admits an explicit state-space solution and provides significant in-
sight into the optimal policies, which was previously unknown. In particular, it was
shown that both players implement estimators, and the dimension of the optimal
controllers is equal to the dimension of player 2’s state.
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Perhaps the most important aspect of this result is that it can be extended to more
general networks. A detailed discussion of some recent results can be found in [21].
Future work will consider systems with output feedback and time delays. It will also
be interesting to see if the spectral factorization results here can be extended to other
system norms.
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Chapter 3
Decentralized Control with Communication
Bandwidth Constraints

Chun Zhang and Geir E. Dullerud

Abstract In this chapter, we investigate the decentralized control problem in the set-
ting of limited bandwidth sensing channels. Specifically, we consider the decentral-
ized stabilization problem of a linear time-invariant (LTI) plant by multiple control
stations that receive sensing information through rate-limited channels, and these
stations are not capable of communicating with each other directly. The main result
of the this chapter is a sufficient condition on the data rate of respective channels
to guarantee system stabilizability. We provide an explicit way to construct the as-
sociated stabilizing encoder, decoder, and controller. We also present a robustness
analysis showing that this control algorithm is structurally robust against model mis-
match.

3.1 Introduction

When one builds a geographically-distributed feedback control system that utilizes
a communication network, issues of bandwidth limitation, latency, and packet loss
become inevitable challenges, adding to the challenge already presented by struc-
tural constraints imposed by the communication graph. It is particularly important
that these information exchange issues be systematically addressed when aggres-
sive network control schemes are to be deployed. In this chapter, we investigate a
stabilization problem in which a multistation control system operating over rate-
limited data links must stabilize a plant through the collaboration of its subsys-
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tems, but where these control stations do not have the capability to communicate
directly with each other. Namely, in the formulation studied the decentralized con-
troller structure poses a topological constraint on information exchange; meanwhile,
the limited bandwidth of the communication channels over which system measure-
ments are transmitted to controllers (without latency or packet loss) give rise to a
nontopological limitation. Our goal is to develop a stabilizing algorithm that can
simultaneously accommodate these two different types of constraints.

The problem of stabilizing an LTI system with a centralized sensor and a cen-
tralized controller connected by a bandwidth-limited channel has been extensively
studied; see [3], [7], [11], [12], [16] and references therein. The important informa-
tion lower bound R = Σλ (A) max(0, log |λ(A)|), where λ (A) denotes the eigenvalue
of the system matrix, has been derived by several researchers. It is also proved to
be tight in [12]. In a slightly different setting, a simple quantizer is constructed to
obtain a looser upper bound, [7]. This simple quantizer plays an important role in
deriving our results here. In [8] and [13], the problem of stabilizing an LTI system
with distributed sensors and a centralized controller is solved via the Slepian–Wolf
coding approach, where the centralized decoder is the key point in the derivation.

In all above works, a centralized control station (decoder and controller) is as-
sumed. However, when one is dealing with large-scale systems, centralized control
is prohibitive due to quickly increasing measurement costs and system complexity.
Decentralized or distributed control is the natural alternative. The problem of de-
centralized stabilization subject to finite data rate feedbacks has been considered
in [10], where necessary and sufficient conditions on stabilizing data rates are de-
rived for systems with a diagonalizable system matrix. The problem of decentral-
ized control over capacity constrained networks is studied in [9], where an existence
condition on stabilizability is given. A similar problem as ours is investigated via an
information theoretical approach in [15].

In this chapter, we study the system depicted in Fig. 3.1. A generic LTI plant
G with no special structural assumption is controlled by v decentralized control
stations. The state-space representation of the system is given in Sec. 3.2.

In the established research literature on decentralized control, one assumes the
measurement yi of the LTI plant G is available to the ith control station precisely and
instantaneously. It is shown that the system can be stabilized by a set of LTI con-
trollers if and only if all decentralized fixed modes1(DFMs) are stable; see [2] and
[14]. Meanwhile, if time-varying controllers are allowed, a larger class of systems
can be stabilized under the decentralized information structure; see [1], [4], and [5].
Information exchange between stations is the key in these approaches.

In this chapter, instead of the perfect measurement, we consider the decentral-
ized stabilization problem in the setting of limited bandwidth sensing channels.
Each local measurement yi is quantized, encoded and then sent to its respective
control station over a noiseless digital memoryless channel with capacity Ri bits
per step, without latency or packet loss. We derive coupled upper bounds on the
data rates required on each channel to guarantee global asymptotic stabilizability.

1 Eigenvalues of the system matrix that cannot be moved by any controller with the decentralized
information structure.
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Fig. 3.1 Decentralized system over communication channels with v control stations

We also provide an explicit way to construct the associated stabilizing encoder, de-
coder, communication code and controller. This unique feature of our work makes
the developed algorithm easy to implement. Furthermore, we also show that our
stabilizing algorithm is robust against model mismatch. This is very important in
implementation, since model mismatch between plant and controllers is generally
unavoidable, and our result shows that the stabilization property provided by the
presented controller is a well-posed one.

The rest of the chapter is organized as follows. Section 3.2 sets up the problem
formally and introduces the notation used. Section 3.3 presents the main result of
the chapter, where the decentralized stabilization problem is solved in a two-station
setting. The stabilizing algorithm is developed along with the design of stabiliz-
ing encoder, decoder, and controller. Robustness analysis of the control algorithm
against model mismatch is presented in Sec. 3.4. Then, Sec. 3.5 discusses extending
the algorithm to multistation systems. The main result is illustrated with an example
in Sec. 3.6. Some concluding remarks are given in the last section.

3.2 Problem Set-Up

The set of integers, non-negative integers, natural numbers, real numbers and non-
negative real numbers is denoted by Z, N0, N , R and R+, respectively.

The infinity norm of a vector x ∈ Rn is defined as ‖x‖∞ := max1≤i≤n |xi|. The
infinity norm of a matrix A ∈Rn×m is defined as ‖A‖∞ := max1≤i≤n ∑m

j=1 |Ai j|. We
denote Bpi∞(a,b) as a pi-dimensional hypercube, which is centered at point a with
edge length 2b.
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The decentralized control system with v control stations as shown in Fig. 3.1 has
the following state-space representation:

x(t +1) = Ax(t)+
v

∑
i=1

Biui(t), ‖x(0)‖∞ ≤ E0

yi(t) = Cix(t), i = 1,2, . . . ,v (3.1)

where state x ∈ Rn, controls ui ∈ Rmi , measurements yi ∈ Rpi ; and A, Bi, Ci are
compatible real matrices.

We assume the system is unstable to make the problem non-trivial; that is,
1≤ Λ := ‖A‖∞. We also assume centralized controllability and observability, that
is, the matrix pair (A, [B1, · · · ,Bv]) is controllable, and the pair ([CT

1 , · · · ,CT
v ]T ,A)

is observable. Otherwise, there is no way to stabilize the system with decentralized
controller. To avoid trivial cases, we assume no single station enjoys joint control-
lability and observability. In other words, no (Ci,A,Bi) triple for all i = 1,2, · · · ,v
is both controllable and observable. Collaboration among stations is necessary for
stabilization purposes.

We use Ki = [Ci|A] to denote the unobservable subspace of the pair (Ci,A), and
use Ri = 〈A|Bi〉 to denote the controllable subspace of (A,Bi). If Ri 6⊆ K j , then
we say Station i is connected to Station j, in the sense that control action from
station i can be observed by Station j, [5]. The system is strongly connected if all
stations are connected to each other, possibly through intermediate stations, [2].
Strong connectivity together with joint controllability and observability ensures the
decentralized stabilization problem is solvable with time varying control laws; see
reference [1], [4] and [5].

Remark 3.1. A non-strongly connected system can be partitioned into a unique set of
strongly connected subsystems, and if treating each subsystem as a single unit, the
resulting system is called a quotient decentralized system (QDS). Assuming joint
controllability and observability, if either the system is strongly connected or the
QDS has no unstable DFM, the decentralized stabilization problem can be solved
with time varying control laws; see [4] and [6].

Define si := inf{m such that dim(∩m
i=0 kerCAi) = n− dim(K⊥

i )}, which is the
generalized observability index of (Ci,A); in other words, the least number of steps
needed to observe the state in K⊥

i from measurements yi.
Define

Wi :=
[
CT

i (CiA)T · · · (CiAsi−1)T
]T

where i = 1, . . . ,v and define W+
i as its generalized inverse.

We use xi(·) = Pix(·) to denote the projection of the state vector in K⊥
i , where

Pi is the projection matrix on K⊥
i along Ki. Notice that Pi here is not the natural

projection since xi(·) and x(·) are of the same size. We use x̃i(·) and x̂i(·) to denote
Station i’s estimate of the state x(·) and its projection xi(·) in K⊥

i , respectively.

The ith local encoder at time t is a map Ei(t) : Rpi×Σ [0,t−1]
i ×Rmit to Σi, taking

values (yi(t),σ i[0,t−1],ui[0,t−1]) 7→ σ i(t), the new codeword. Notation Σi is the
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ith codeword space and Σ [0,t−1]
i denotes the union of all past codeword spaces up to

time t. Notation σ i[0,t− 1] is used to denote past codewords and ui[0,t− 1] is used
to denote all past local controls. The local encoder knows the local decoding policy
Di but not the local control policy Ci.

The ith local decoder at time t is a map Di(t) : Σ [0,t]
i ×Rmit to Rpi , taking val-

ues (σ i[0,t],ui[0,t−1]) 7→ ŷi(t), an estimate of the respective measurement yi. The
decoder knows the local encoding policy Ei but not the local control policy Ci.

The ith local controller at time t is a map Ci(t) : Rpi(t+1) to Rmi , taking values
ŷi[0,t] 7→ ui(t), the local control, which depends causally on the local decoder’s
outputs.

The encoder and the decoder are assumed to have unlimited memory, therefore
they can store and use all the past information. A digital noiseless memoryless chan-
nel connects each local encoder and decoder pair.

The major difference in our set-up from reference [12] is that the local encoder,
decoder controller triple does not have information such as measurements, code-
words, or controls of other stations. Thus, extra communication cost incurs when
they exchange these local information with their peers. This is not an issue in the
centralized single-station system.

3.3 Stabilizing Algorithm

In this section, we assume all local stations have the exact model of the plant. The
robustness issue of this algorithm against model mismatch is investigated in the
next section. In order to keep the notation clean and describe the algorithm more
efficiently, we present the main idea of this chapter in the two-control-station setting,
that is, system (3.1) with v = 2. Direct extension of the algorithm to the multistation
case is briefly discussed in Sec. 3.5.

The control algorithm adopted here is motivated by [5]. It is divided into three
phases: observation, communication, and control. First, both stations listen to the
system with no controls applied in order to compute their own estimates of the
initial state. Then these stations exchange their estimates by coding them into control
signals. Finally, both controllers use their own noisy estimates of the initial state to
design controls, and try to drive the state of the system back to zero.

The logic behind this algorithm is that if the data rate on each channel is high
enough, then measurements yi get sufficiently finely quantized so that each station
will have quite accurate information about the initial state. Then the control action
taken will at least bring the state to a smaller uncertainty set than the initial one and
then eventually lead it to zero.

Without loss of generality, we assume s1 ≥ s2.
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3.3.1 Observation

For the observation stage, we have the following lemma.

Lemma 3.1. Within at most si steps, Station i can estimate xi(0) = Pix(0) with error
bounded by

ε i
pi
√

Ni
E0

where pi = dim(yi), ε i = ‖W+
i ‖∞‖Ci‖∞Λ si−1 and Ni = 2Ri represents the number

of quantization levels on channel i.

Remark 3.2. From now on, we assume that pi
√

Ni is an integer; otherwise, we simply
replace Ni with the smallest integer Ñi ≥ Ni such that pi

√
Ñi is an integer.

Proof. Set the control u1(t) = u2(t) ≡ 0 for all 0 ≤ t < s1 (s1 ≥ s2 is assumed).
Since yi(0) =Cix(0), thus ‖yi(0)‖∞ ≤ ‖Ci‖∞‖x(0)‖∞. Then it is clear that yi(0) ∈
Bpi∞(0,‖Ci‖∞E0).

Therefore, for all t = 0,1, . . . ,s1−1, we have

yi(t) ∈ Bpi∞(0,‖Ci‖∞Λ tE0)

Divide the pi-cube at time t into Ni equal smaller pi-cubes, let σ i(t,yi(t)) be the
codeword that represents the small cube containing the true value of yi(t), and let
ŷi(t) denote the reconstruction of the codeword by the decoder. We have

‖yi(t)− ŷi(t)‖∞ ≤
‖Ci‖∞Λ tE0

pi
√

Ni

For convenience, let us define the following shorthand notation

Yi =




yi(0)

yi(1)
...

yi(si−1)




; Ŷi =




ŷi(0)

ŷi(1)
...

ŷi(si− 1)




(3.2)

If perfect measurements are available, then from linear system theory, we know
that xi(0) can be computed as follows:

xi(0) = W+
i Yi

However, since Station i only has quantized measurements ŷi(·), it can only esti-
mate xi(0) via the following reconstruction with noisy measurements:

x̂i(0) = W+
i Ŷi (3.3)

where the error is bounded by
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‖xi(0)− x̂i(0)‖∞ ≤ ‖W+
i ‖∞ max

0≤t≤si−1
‖ŷi(t)− yi(t)‖∞

≤ ‖W
+
i ‖∞‖Ci‖∞Λ si−1E0

pi
√

Ni
(3.4)

=:
ε i

pi
√

Ni
E0 (3.5)

Of course, we want ε i/
pi
√

Ni < 1; otherwise, 0 is a better estimate. Notice that
ε i is entirely determined by the open-loop system parameters. Also notice that Eq.
(3.4) is valid only when Λ ≥ 1 as we assumed. ⊓⊔

Remark 3.3. Stations 1 and 2 may use different numbers of steps to reconstruct their
own estimates of the initial state. If s1 > s2, Station 2 simply waits after s2−1.

Let us consider the error in estimating xi(si) at time t = si−1. This result will be
used in later derivation. Let x̂i(si) be the si-step ahead estimate, then

‖xi(si)− x̂i(si)‖∞ ≤Λ si‖xi(0)− x̂i(0)‖∞ ≤
Λ si ε iE0

pi
√

Ni
(3.6)

3.3.2 Communication

At time t = s1, each station has an estimate x̂i(0) of the initial state. This information
needs to be exchanged between them for stabilizing purposes. From Station i to Sta-
tion j, we only need to send (I−Pj)x̂i(0), where i, j = 1,2, and i 6= j. The remaining
part is directly available to Station j. Since direct communication between stations
is not available, one station has to encode its estimate into control signals and the
counter party has to decode it based on its local measurements. This is effectively
to explore the perfect channel through the plant.

Recall that Station i’s control action can be observed by Station j only ifRi 6⊆ K j.
Assume this is true, then there exists a positive integer ti2 such that

α i := rank

{
C j

ti−1

∑
ℓ=0

Ati−1−ℓBiB
T
i (AT )ti−1−ℓ

}
6= 0 (3.7)

Let β i be the smallest positive integer such that α iβ i ≥ n, where n = dim(x).
Define the following encoding matrix from Station i to Station j

E ji =




C jMi(ti,ti) · · · 0
...

. . .
...

C jMi(β iti,ti) · · · C jMi(ti,ti)


 (3.8)

2 As we will see later, the smallest ti should be used to minimize error propagation.
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where Mi(p,q) = ∑ti−1
ℓ=0 Ap−1−ℓBiBT

i (Aq−1−ℓ)T . It is clear that rank{E ji}≥ n. Thus,
there exist matrices Si and Ti such that SiE jiTi = In. All these matrices can be pre-
computed and stored in both local control stations.

We have the following lemma on information exchange between multiple stations
when there are no nontopological constraints; in other words, all channels are perfect
and are able to transmit real numbers precisely and instantaneously.

Lemma 3.2. Given system (3.1) with no communication constraints, and assume
Ri 6⊆ K j for i, j = 1,2, · · · ,v, then any vector φ ∈ Rn can be encoded into a control
sequence ui(ℓ), 0≤ ℓ ≤ β iti−1 by Station i and decoded exactly by Station j from
its measurements y j(kti), where k = 1,2, · · · ,β i.

Proof. Define zp := Tiφ =
[
zT

1 · · · zT
β i

]T
, where each zi ∈ Rn. Then we have

SiE jizp = φ . We can treat zp as the communication codeword.
As a discrete-time counterpart to [5], design controls as follows:

ui(ℓ) =





BT
i (AT )ti−1−ℓz1 for 0≤ ℓ≤ ti− 1

BT
i (AT )2ti−1−ℓz2 for ti ≤ ℓ≤ 2ti−1

· · ·
BT

i (AT )β iti−1−ℓzβ i
for (β i−1)ti ≤ ℓ≤ β iti−1

(3.9)

u j(ℓ) = 0 for 0≤ ℓ≤ β iti−1

Station j can reconstruct φ from its measurements y j(kti), k = 1,2, . . . ,β i and
the system initial state x(0) as follows

φ = Si




y j(ti)−C jAti x(0)
...

y j(β iti)−C jAβ iti x(0)


 (3.10)

It can be easily verified that we can replace x(0) with x j(0) in Eq. (3.10) since
the part of x(0) in K j is filtered by C j .

Figuratively, the above scheme encodes the information into β i pieces, while
each one of them requires ti steps of transmission time. ⊓⊔

Now let us consider the information exchange in the two station system (v = 2)
with the bandwidth constraint described in the previous sections. We have,

Lemma 3.3. GivenR1 6⊆ K2, Station 2 can reconstruct the initial state x(0) at time
t = s1 +β 1t1 with error bounded by3

(
η1

p2
√

N2
+

ε1
p1
√

N1
+

ε2
p2
√

N2

)
E0

where ε1 and ε2 are given in Lemma 3.1, and

3 Notice that all constants are completely determined by the open-loop system parameters.
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η1 = ‖S1‖∞‖C2‖∞
(

Λβ 1t1

(
Λ s1ε2

p2
√

N2

)
(1 + p2

√
N2)+

1−Λ β1t1

1−Λ
‖B1‖∞ρ1

)
(3.11)

ρ1 = ‖BT
1 ‖∞Λ t1−1‖T1‖∞

(
ε1

p1
√

N1
+1

)
(3.12)

Proof. Encode (I−P2)x̂1(0) into controls u1(ℓ) as in Eq. (3.9) and set u2(ℓ) ≡ 0
for all s1 ≤ ℓ≤ s1 + β 1t1− 1. It is easy to verify that ‖u1(ℓ)‖∞ ≤ ρ1E0.

According to Lemma 3.2, if Station 2 knows exact measurements and initial state,
it can then reconstruct (I−P2)x̂1(0) exactly. However, due to limited bandwidth, it
only has the decoder’s estimate ŷ2(·) and the noisy estimate x̂2(0) computed at time
s2− 1. Thus, it can only compute a noisy estimate (I−P2)x̄1(0) using the available
data, such that

(I−P2)x̄1(0) := S1




ŷ2(s1 + t1)−C2As1+t1 x̂2(0)
...

ŷ2(s1 + β 1t1)−C2As1+β 1t1 x̂2(0)




The error between (I−P2)x̂1(0) and (I−P2)x̄1(0) can be bounded as follows:

ε̧∞ = ‖(I−P2)x̄1(0)− (I−P2)x̂1(0)‖∞

≤ ‖S1‖∞

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣




ŷ2(s1 + t1)−C2As1+t1 x̂2(0)
...

ŷ2(s1 + β 1t1)−C2As1+β 1t1 x̂2(0)




−




y2(s1 + t1)−C2As1+t1 x(0)
...

y2(s1 +β 1t1)−C2As1+β 1t1 x(0)




∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
∞

≤ ‖S1‖∞ max
1≤k≤β 1

{||y2(s1 + kt1)− ŷ2(s1 + kt1)||∞

+‖C2As1+kt1 x(0)−C2As1+kt1 x̂2(0)‖∞
}

(3.13)

In order to compute ‖y2(s1 + kt1)− ŷ2(s1 + kt1)‖∞, notice that both the encoder
E2 and the decoder D2 can compute the following y̌2(·), which is an estimate of the
autonomous part of y2(·),

y̌2(s1 + kt1) = C2As1+kt1 x̂2(0), k = 1, · · · ,β 1 (3.14)

On the other hand, the actual output y2(s1 + kt1) evolves as follows

y2(s1 + kt1) = C2As1+kt1 x(0)+C2

s1+kt1−1

∑
ℓ=s1

As1+kt1−1−ℓB1u1(ℓ)
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It is clear that y2(s1 + kt1) ∈ Bp2∞(y̌2(s1 + kt1),r1 + r2), where

r1 = ‖C2‖∞Λ s1+kt1‖x2(0)− x̂2(0)‖∞ ≥ ‖C2As1+kt1 x(0)−C2As1+kt1 x̂2(0)‖∞

r2 = ‖C2

s1+kt1−1

∑
ℓ=s1

As1+kt1−1−ℓB1u1(ℓ)‖∞

Divide this p2-cube into N2 smaller cubes and pick the one containing the true value
of output y2(s1 + kt1), the error of this coding scheme is then bounded by

‖y2(s1 + kt1)− ŷ2(s1 + kt1)‖∞ ≤
1

p2
√

N2
(r1 + r2)

≤ ‖C2‖∞
1

p2
√

N2

[
Λ s1+kt1 ε2

p2
√

N2
+

1−Λ kt1

1−Λ
‖B1‖∞ρ1

]
E0

Notice that r1 is also the upper bound for the second part of Eq. (3.13). Since we
assumed Λ ≥ 1, Eq. (3.13) gives the following error bound

‖(I−P2)x̄1(0)− (I−P2)x̂1(0)‖∞ ≤
η1

p2
√

N2
E0

where η1 is defined in Eq. (3.11).
Then the error between (I−P2)x̄1(0) and (I−P2)x1(0) can be bounded by simply

applying the triangle inequality

ε̧∞ = ‖(I−P2)x̄1(0)− (I−P2)x1(0)‖∞
≤ ‖(I−P2)x̄1(0)− (I−P2)x̂1(0)‖∞ + ‖(I−P2)x̂1(0)− (I−P2)x1(0)‖∞
≤ η1

p2
√

N2
E0 +

ε1
p1
√

N1
E0

At this time, Station 2 has decoded enough information from its measurements
about the part of the initial state inK2. Together with x̂2(0) computed at time s2−1,
it can reconstruct the initial state

x̃2(0) = P+
1 (I−P2)x̄1(0)+ P+

2 x̂2(0)

where P+
i denotes the insertion from K⊥

i to Rn.
Thus, the ultimate error bound between the estimate computed by Station 2 and

the real initial state is as follows:

‖x̃2(0)− x(0)‖∞ ≤
(

η1
p2
√

N2
+

ε1
p1
√

N1
+

ε2
p2
√

N2

)
E0

⊓⊔

During time s1 + β 1t1 ≤ t ≤ s1 +(β 1 +1)t1−1, Station 1 applies the following
controls to the system to offset the previously accumulated control effects
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u1(t) =−BT
1 (AT )s1+(β 1+1)t1−1−t z

z := M+
1 (t1,t1)

s1+β 1t1−1

∑
ℓ=s1

As1+β 1t1−1−ℓB1u1(ℓ)

where M+
i (·, ·) is the generalized inverse of Mi(·, ·) defined in Eq. (3.8).

Meanwhile, set u2(t) = 0. Then at time t = s1 +(β 1 +1)t1, the system state x(t)
is driven to

x(s1 +(β 1 +1)t1) = As1+(β1+1)t1 x(0)

If (h−1)s1 < s1 +(β 1 +1)t1≤ hs1−1 for some h∈N0, then let u1(t)= u2(t)= 0
for time s1 +(β 1 + 1)t1 ≤ t ≤ hs1− 1 in order to take advantage of the repetitive
estimation described below.

Both the encoder E1 and the decoder D1 know exactly the controls applied up
to time hs1, so they can run a simulating observation process and compute a tighter
state estimate. The basic idea is to observe ŷ1(s1), · · · , ŷ1(2s1−1), and then estimate
x1(s1) using the same method as in the proof of Lemma 3.1. By repeating the pro-
cess, we have the following error bound for s1-step ahead estimate similar to that
computed in Eq. (3.6)

‖x1(ms1)− x̂1(ms1)‖∞ ≤
‖W+

1 ‖m
∞‖C1‖m

∞Λm(2s1−1)E0

( p1
√

N1)m

=
Λms1 εm

1 E0

( p1
√

N1)m
, 1≤m≤ h

Then we start the information transmission from Station 2 to Station 1 at time
t = hs1. We have the following result:

Lemma 3.4. GivenR2 6⊆ K1, Station 1 can reconstruct the initial state x(0) at time
t = hs1 + β 2t2 with error bounded by

(
η2

p1
√

N1
+

ε1
p1
√

N1
+

ε2
p2
√

N2

)
E0

where ε1 and ε2 are given in Lemma 3.1, and

η2 = ‖S2‖∞‖C1‖∞
(

Λβ 2t2

(
Λ s1ε1

p1
√

N1

)h

(1 + p1
√

N1)+
1−Λ β2t2

1−Λ
‖B2‖∞ρ2

)

ρ2 = ‖BT
2 ‖∞Λ t2−1‖T2‖∞

(
ε2

p2
√

N2
+1

)

Proof. The proof is similar to Lemma 3.3. The only difference here is that Station 1
uses the estimate x̂1(hs1) to replace x̂1(0) wherever it is applicable. ⊓⊔
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Finally, we can also design controls u2(t), for hs1 +β 2t2 ≤ t ≤ hs1 +(β 2 +1)t2−
1 to drive the state of the system back to x(t3) = Ahs1+(β 2+1)t2 x(0) at time t3 =
hs1 +(β 2 +1)t2.

3.3.3 Control

At time t3, both stations have their estimates about the initial state, namely x̃1(0)
and x̃2(0). They can then compute their own estimates of the state x(t3) and design
the following controls indepedently to bring the state back to zero

ui(t) =−BT
i (AT )t3+n−1−tzi, t3 ≤ t ≤ t3 +n− 1

where

zi := θ iM
+
i (n,n)At3+nx̃i(0)

with M+
i (·, ·) defined as the generalized inverse of Mi(·, ·) in Eq. (3.8) and θ i =

‖Mi‖∞(∑2
i=1‖Mi‖∞)−1. The norm of x(t3 + n) can be easily bounded as follows.

For simplicity, let us omit the parameter n in Mi(n,n); then we have

x(t3 + n) = At3+nx(0)−
2

∑
i=1

θ iMiM+
i At3+nx̃i(0)

=
2

∑
i=1

θ i(I−MiM+
i )At3+n(x(0)− x̃i(0))

Since Mi is positive semi-definite, from singular value decomposition it is clear
that ‖I−MiM+

i ‖∞ ≤ 1; therefore,

‖x(t3 +n)‖∞ ≤
2

∑
i=1

θ i‖I−MiM
+
i ‖∞Λ t3+n max

i=1,2
‖x(0)− x̃i(0)‖∞

≤Λ t3+n max
i=1,2
‖x(0)− x̃i(0)‖∞

Now, we can state the main result of this chapter.

Theorem 3.1. If we follow the above control algorithm, then the two-station decen-
tralized system (3.1) with bandwidth-limited sensing channels can be asymptotically
stabilized if the following inequality is satisfied for some 0≤ δ < 1:

max
i, j=1,2

i6= j

(
η j

pi
√

Ni
+

ε i
pi
√

Ni
+

ε j
p j
√

N j

)
< δΛ−(t3+n) (3.15)

The stabilizing channel data rate Ri is then given by log2 Ni.
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Proof. To ensure the closed-loop asymptotic stability, we want ‖x(t)‖∞ → 0 as
t→∞. A sufficient condition is to impose ‖x(t3 +n)‖∞ < δE0 for some 0≤ δ < 1,
which is guaranteed by imposing maxi=1,2(‖xi(0)− x̃i(0)‖∞) < Λ−(t3+n)δ E0. In
other words, we want the uncertainty set of state contracts after each cycle. Since
the infinity norm of all states between time 0 and t3 +n is parameterized by E0, and
if we can bring the uncertainty set at time k(t3 +n) to zero as k→∞, we can thus
drive the state to the equilibrium point eventually.

Since all the terms on the left hand side of inequality (3.15) is parameterized
by N1 and N2, we can then compute the sufficient data rate on each channel to
guarantee the asymptotic stabilizability of the system. ⊓⊔

We can of course formulate some optimization problems on the required channel
rate, for example, min(w1R1 + w2R2) subject to Eq. (3.15) where wi are different
weights put on the data rate of channel i.

Remark 3.4. Notice that the bandwidth requirement computed here is the peak
value. The channels are idle during part of the cycle; thus, by using better cod-
ing strategies or by sharing the channel with other systems, the average bandwidth
required can be reduced, perhaps significantly.

There is an immediate enhancement for the two-station case. In the algorithm
above, when Station 1 transmits information to Station 2, the latter does nothing
but listen. However, since both local loops know their own control values, Station
2 can actually transmit information to Station 1 simultaneously. By doing so, the
whole cycle is reduced to s1 +max{(β 1 +1)t1,(β 2 +1)t2}+n steps. This certainly
tightens the bounds in Eq. (3.15), and consequently lowers the data rates required
for stabilization. The only modification to the above derivation is to replace Eq.
(3.14) with

y̌2(s1 + kt1) = C2As1+kt1 x̂2(0)+C2

s1+kt1−1

∑
ℓ=s1

As1+kt1−1−ℓB2u2(ℓ)

3.4 Robustness Analysis against Model Mismatch

In this section, we consider the robustness issue of the stabilizing algorithm de-
veloped in the previous section against model mismatch. More specifically, we are
interested in stabilizing the decentralized system (3.1) with channel bandwidth con-
straints and possible mismatched plant model programmed in control stations. In
practice, accuracy of system modeling is limited due to factors such as the inevitabil-
ity of measurement errors, system nonlinearities, change of system characteristics,
etc. Thus the model that is being programmed into controllers may have slight errors
from the real plant. Control algorithms must be robust against these mismatches for
successful deployment. We show that there exists a neighborhood around the nomi-
nal system, within which our algorithm is stabilizing for all systems.
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Instead of having the exact nominal system as in Eq. (3.1), we assume Station j,
where j ∈ {1, · · · ,v} has the following model of the system:

x(t +1) = (A +∆A j)x(t)+
v

∑
i=1

(Bi + ∆B j
i )ui(t), ‖x(0)‖∞ ≤ E0

yi(t) = (Ci +∆C j
i )x(t), i = 1,2, . . . ,v (3.16)

where A, Bi, Ci are defined as in Sec. 3.2. Errors ∆A j ∈ ∆A j , ∆B j
i ∈ ∆B j

i , and
∆C j

i ∈ ∆C j
i are the additive perturbations to the nominal system, representing the

model mismatch programmed in the jth controller.
In order to clearly illustrate the idea, we use the two-station system in the deriva-

tion as in the previous section. For simplicity, we also assume ∆B j
i = ∆C j

i = 0 for
all i, j = 1,2. Similar analysis can be done when they are nonzero and the result still
holds true. From previous discussion in the section, it is reasonable to assume that
all control stations have the same mismatched system model since they are most
likely programmed with the same parameters in practice. 4

To summarize, in this section we investigate the stabilization problem of system
(3.1) with finite bandwidth limitation, while Station j = 1,2 has the following model
of the system:

x(t + 1) = (A +∆A)x(t)+
2

∑
i=1

Biui(t), ‖x(0)‖∞ ≤ E0

yi(t) = Cix(t), i = 1,2. (3.17)

Again, we assume s1 ≥ s2 as in the previous section. In addition, we assume
∆A ∈ ∆A, which is the admissible perturbation set around the nominal system. One
task here is to identify its impact on the required stabilizing data rates.

Similar to Wi, we define the perturbed observation matrix used by Station i as

Ŵi :=
[
CT

i (Ci(A +∆A))T . . . (Ci(A +∆A)si−1)T
]T

,

where i = 1,2. Its generalized inverse is given by Ŵ+
i := (Ŵ∗

i Ŵi)
−1Ŵ∗

i =: W+
i +

∆W +
i . Since both the inverse and conjugate transpose are continuous operations,

the size of the error, ‖∆W+
i ‖∞ is positively related to ‖∆A‖∞, in the sense that

‖∆W+
i ‖∞→ 0 as ‖∆A‖∞→ 0.

In order to simplify the notation, we define the following functions for conve-
nience. They will be used as shorthand for some complex expressions in this section,
where only properties listed below are relevant.

Let µ ik(∆A), where i = 1,2 and k ∈ N , be a nonnegative function of ∆A such
that µ ik(∆A)→ 0 as ‖∆A‖∞→ 0. Functions ξ k(∆A) are similarly defined.

4 The algorithm we proposed is still robust even if stations have different models of the system.
Interested readers can refer to [17] for details.
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Define ht(∆A) := (A+∆A)t −At . From the binomial expansion, we know it is a
function of ∆A and ‖ht(∆A)‖∞→ 0 as ‖∆A‖∞→ 0.

Let ek(∆A,x), where k ∈ N , be a function of ∆A and x such that ek(∆A,x) goes
to the origin as either ∆A or x does so.

Similar to the previous section, we describe the algorithm in three steps.

3.4.1 Observation

Parallel to Lemma 3.1, we have the following version of the observation lemma
when the system model is not exact.

Lemma 3.5. Within at most si steps, Station i can estimate xi(0) = Pix(0) with error
bounded by (

ε i
pi
√

Ni
+ µ i1(∆A)

)
E0

where pi, ε i, and Ni are defined as in Lemma 3.1. The function µ i1(∆A) is as defined
above.

Proof. During the observation stage, we set the controls u1(t) = u2(t) ≡ 0 for
0≤ t < s1. Therefore, we have

‖yi(t)− ŷi(t)‖∞ ≤
‖Ci‖∞Λ tE0

pi
√

Ni

This error is only determined by the encoder/decoder resolution and range. It is
not affected by the model mismatch. However, Station i cannot use Eq. (3.3) to esti-
mate the initial state now. Instead, it has to use the following estimate due to model
mismatch,

x̂i(0) = Ŵ+
i Ŷi

The associated estimation error is

xi(0)− x̂i(0) = W+
i Yi− (W+

i +∆W+
i )Ŷi

= W+
i (Yi−Ŷi)−∆W+

i Ŷi

where Yi and Ŷi are defined in Eq. (3.2).
The bound of the estimation error can be computed as
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‖xi(0)− x̂i(0)‖∞ ≤
ε iE0
pi
√

Ni
+ ‖∆W+

i ‖∞‖Ŷi‖∞

≤ ε iE0
pi
√

Ni
+ ‖∆W+

i ‖∞(‖Ŷi−Yi‖∞ +‖Yi‖∞)

≤ ε iE0
pi
√

Ni
+ ‖∆W+

i ‖∞‖Ci‖∞Λ si−1
[

1 +
1

pi
√

Ni

]
E0

=:

(
ε i

pi
√

Ni
+ µ i1(∆A)

)
E0

⊓⊔

3.4.2 Communication

Now let us consider the communication stage, during which stations exchange their
estimates of the initial state with possibly mismatched models of the system.

Define the following notation:

1. R̂i = 〈A+ ∆A|Bi〉, i = 1,2, as the perturbed ith controllable subspace.
2. K̂i = [Ci|A +∆A], i = 1,2, as the perturbed ith unobservable subspace.

Recall thatRi = 〈A|Bi〉, andKi = [Ci|A], i = 1,2. Since we assumed thatRi 6⊆ K j,
therefore,




C j

C jA
...

C jAn−1




[
Bi ABi · · · An−1Bi

]
6= 0 (3.18)

If the admissible perturbation set ∆A is sufficiently small, then Eq. (3.18) con-
tinues to hold with A being replaced by any value A + ∆A ∈ A + ∆A, since the
perturbation ∆A is continuous. In other words, there exists a ∆A such that for all
∆A ∈ ∆A, we have R̂i 6⊆ K̂ j , for i, j = 1,2.

This means that even though there are model mismatches, the channel through
the plant still exists. Thus, control actions from Station i can still be observed by
Station j. We now define

α̂ i := rank

{
C j

ti−1

∑
ℓ=0

(A+ ∆A)ti−1−ℓBiB
T
i ((A +∆A)T )ti−1−ℓ

}
6= 0 (3.19)

Since rank is an upper-continuous operation, therefore α̂ i ≥ α i, where α i and
ti are defined in Eq. (3.7).
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Remark 3.5. It is possible that there exists a number t̃i ∈N such that t̃i < ti, and Eq.
(3.19) still holds if we replace ti with t̃i. Without loss of generality, we choose to use
ti here to simplify the derivation.

Similarly there exists a smallest β̂ i ∈ N such that α̂ iβ̂ i ≥ n. We define the fol-
lowing coding matrix, which is used by Station i

Ê ji(∆A) =




C jM̂i(ti,ti) · · · 0
...

. . .
...

C jM̂i(β̂ 1ti,ti) · · · C jM̂i(ti,ti)


 (3.20)

where M̂i(p,q) = ∑ti−1
ℓ=0 (A +∆A)p−1−ℓBiBT

i ((A +∆A)T )q−1−ℓ.

Clearly, when ∆A→ 0, all parameters α̂ i, β̂ i, M̂i and Ê ji approach their respective
nominal values due to the continuity of the perturbation. For example,

M̂i(p,q) =
ti−1

∑
ℓ=0

(A+ ∆A)p−1−ℓBiB
T
i ((A+ ∆A)T )q−1−ℓ

= Mi(p,q)+ ∆Mi(p,q)

where the nominal value Mi(p,q) is given in Eq. (3.8) and

∆Mi(p,q) =
ti−1

∑
ℓ=0

hp−1−ℓ(∆A)BiBT
i (AT )q−1−ℓ +Ap−1−ℓBiBT

i (hq−1−ℓ(∆A))T

+hp−1−ℓ(∆A)BiB
T
i (hq−1−ℓ(∆A))T

→ 0 as ∆A→ 0

Again, since rank Ê ji(∆A)≥ n , there exist matrices Ŝi and T̂i such that ŜiÊ jiT̂i =
In.

We show the transmission from Station 1 to Station 2 to illustrate that even with
model mismatch, the initial state can still be reconstructed with a predetermined
error bound using the algorithm we introduced in the previous section.

Lemma 3.6. Given R1 6⊆ K2, there exists a neighborhood around the nominal sys-
tem such that for all mismatched models within this neighborhood, Station 2 can
reconstruct the initial state x(0) at time s1 + β̂ 1t1 with error bounded by

(
η1

p2
√

N2
+

ε1
p1
√

N1
+

ε2
p2
√

N2
+ξ 1(∆A)

)
E0

where η1 is defined as in Eq. (3.11) with S1 replaced by Ŝ1, and ε1 and ε2 are given
in Lemma 3.1. The function ξ 1(·) is a function defined as in the beginning of this
section, which represents the extra estimation error introduced by model mismatch.

Proof. Again, we only need to encode (I−P2)x̂1(0) and send it over the channel
through the plant. We design the following codewords:
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zp = T̂1(I−P2)x̂1(0) =
[
zT

1 · · · zT
β̂ 1

]T

Define controls as in Eq. (3.9) with A being replaced with A +∆A. We have

u1(ℓ) =






BT
1 ((A+ ∆A)T )s1+t1−1−ℓz1 for s1 ≤ ℓ≤ s1 + t1−1

BT
1 ((A+ ∆A)T )s1+2t1−1−ℓz2 for s1 + t1 ≤ ℓ≤ s1 +2t1−1

· · ·
BT

1 ((A+ ∆A)T )s1+β̂ 1t1−1−ℓzβ̂ 1
for s1 +(β̂ 1−1)t1 ≤ ℓ≤ s1 + β̂ 1t1−1

u2(ℓ) = 0 for s1 ≤ ℓ≤ s1 + β̂ 1t1−1

It can be easily computed that

maxs1≤ℓ≤s1+β̂ 1t1−1‖u1(ℓ)‖∞

≤ ‖BT
1 ‖∞‖A +∆A‖t1−1

∞ ‖T̂1‖∞
(

1+
ε1

p1
√

N1
+ µ11(∆A)

)
E0

=: (ρ1 + µ12(∆A))E0

where ρ1 is given in Lemma 3.3.
Due to the fact that Ŝ1Ê21T̂1 = In, we know

(I−P2)x̂1(0) = Ŝ1




ỹ2(s1 + t1)−C2(A +∆A)s1+t1x(0)
...

ỹ2(s1 + β̂1t1)−C2(A +∆A)s1+β̂ 1t1 x(0)




where for 0 < k ≤ β̂ 1, the fictitious output ỹ2(·) on channel 2 if the system matrix is
A+ ∆A is given by

ỹ2(s1 + kt1) = C2(A +∆A)s1+kt1 x(0)+
s1+kt1−1

∑
ℓ=s1

C2(A +∆A)s1+kt1−1−ℓB1u1(ℓ)

However, the actual measurement y2(·) during this period before encoding is

y2(s1 + kt1) = C2As1+kt1 x(0)+
s1+kt1−1

∑
ℓ=s1

C2As1+kt1−1−ℓB1u1(ℓ)

Denote ŷ2(·) as the decoder’s estimate of y2(·) as in Sec. 3.3.2; then Station 2
can decode the message sent by Station 1 in the following way

(I−P2)x̄1(0) := Ŝ1




ŷ2(s1 + t1)−C2(A+ ∆A)s1+t1 x̂2(0)
...

ŷ2(s1 + β̂ 1t1)−C2(A+ ∆A)s1+β̂ 1t1 x̂2(0)



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Now, let us compute the error between the decoded estimate and the data sent by
Station 1:

ε̧∞ = ‖(I−P2)x̄1(0)− (I−P2)x̂1(0)‖∞

≤ ‖Ŝ1‖∞

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣




ŷ2(s1 + t1)−C2(A +∆A)s1+t1 x̂2(0)
...

ŷ2(s1 + β̂ 1t1)−C2(A +∆A)s1+β̂ 1t1 x̂2(0)




−




ỹ2(s1 + t1)−C2(A +∆A)s1+t1x(0)
...

ỹ2(s1 + β̂ 1t1)+C2(A +∆A)s1+β̂ 1t1 x(0)




∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
∞

≤ ‖Ŝ1‖∞ max
1≤k≤β̂ 1

(‖ỹ2(s1 + kt1)− ŷ2(s1 + kt1)‖∞

+‖C2(A +∆A)s1+kt1‖∞‖x2(0)− x̂2(0)‖∞
)

(3.21)

Clearly, by the triangle inequality, we have

‖ỹ2(s1 + kt1)− ŷ2(s1 + kt1)‖∞ ≤ ‖y2(s1 + kt1)− ỹ2(s1 + kt1)‖∞
+ ‖ŷ2(s1 + kt1)− y2(s1 + kt1)‖∞ (3.22)

where the first term signifies the extra error introduced by model mismatch and the
second term is the coding error as in Sec. 3.3. We can compute the first term as
follows:

‖y2(s1 + kt1)− ỹ2(s1 + kt1))‖∞

= ||C2hs1+kt1(∆A)x(0)+
s1+kt1−1

∑
ℓ=s1

C2hs1+kt1−1−ℓ(∆A)B1u1(ℓ)||∞

≤ ‖C2‖∞
(
‖hs1+kt1(∆A)‖∞E0

+
s1+kt1−1

∑
ℓ=s1

‖hs1+kt1−1−ℓ(∆A)‖∞‖B1‖∞‖u1(ℓ)‖∞
)

=: µ23(∆A)E0→ 0 as ‖∆A‖∞→ 0

Now consider the quantization error ‖y2(s1 + kt1)− ŷ2(s1 + kt1)‖∞ in Eq. (3.22).
Again, the encoder E2 and the decoder D2 can compute y̌2(s1 + kt1) = C2(A +
∆A)s1+kt1 x̂2(0), which is their estimate of the autonomous part of the local mea-
surements, in an effort to reduce the quantization range and ultimately to reduce the
quantization error. Therefore, the encoding region can be computed as
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y2(s1 + kt1)− y̌2(s1 + kt1) = C2As1+kt1(x(0)− x̂2(0))+C2hs1+kt1(∆A)x̂2(0)

+
s1+kt1−1

∑
ℓ=s1

C2As1+kt1−1−ℓB1u1(ℓ)

whose size can be bounded as follows:

‖y2(s1 + kt1)− y̌2(s1 + kt1)‖∞

≤ ‖C2‖∞
[

Λ s1+kt1

(
1

p2
√

N2
+ µ21(∆A)

)
E0

+ ‖hs1+kt1(∆A)‖∞
(

1 +
1

p2
√

N2
+ µ22(∆A)

)
E0

+
1−Λ s1+kt1

1−Λ
‖B1‖∞(ρ1 + µ12(∆A))E0

]

=: η̂1E0 + µ24(∆A)E0

where η̂1 = ‖C2‖∞
(

Λ s1+kt1 1
p2
√

N2
+ 1−Λ s1+kt1

1−Λ ‖B1‖∞ρ1

)
and µ24(∆A) denotes the

remaining portion of the above inequality.
With the same encoding and decoding strategy as in Sec. 3.3.2, the coding error

is given by

‖y2(s1 + kt1)− ŷ2(s1 + kt1)‖∞ ≤
1

p2
√

N2
(η̂1 + µ24(∆A))E0

It is clear that

‖C2(A+ ∆A)s1+kt1‖∞‖x(0)− x̂2(0)‖∞

≤ ‖C2‖∞(Λ s1+kt1 +‖hs1+kt1(∆A)‖∞)

(
1

p2
√

N2
+ µ21(∆A)

)
E0

=:

(
‖C2‖∞Λ s1+kt1 1

p2
√

N2
+ µ25(∆A)

)
E0

Combining all pieces we computed above together, the bound on the estimation
error between Station 2’s estimate and the data sent from Station 1 is given by

ε̧∞ = ‖(I−P2)x̂1(0)− (I−P2)x̄1(0)‖∞

≤ ‖Ŝ1‖∞
(

µ23(∆A)+
η̂1 + µ24(∆A)

p2
√

N2
+
‖C2‖∞Λ s1+kt1

p2
√

N2
+ µ25(∆A)

)
E0

= ‖Ŝ1‖∞
(

1
p2
√

N2

(
η̂1 +‖C2‖∞Λ s1+kt1

)
+ µ26(∆A)

)
E0

:=
η1

p2
√

N2
E0 + µ27(∆A)E0

where η1 is defined as in Lemma 3.3 with S1 replaced by Ŝ1.
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Thus Station 2 now can compute the full estimate of the initial state as in Sec.
3.3.2, The estimation error is bounded as follows:

‖x̃2(0)− x(0)‖∞ ≤
[

η1
p2
√

N2
+

ε1
p1
√

N1
+

ε2
p2
√

N2

]
E0 +ξ 1(∆A)E0

where ε i, i = 1,2, are defined in Lemma 3.3, η1 is defined as above and

ξ 1(∆A) = µ11(∆A)+ µ21(∆A)+ µ27(∆A).

⊓⊔
The sheer effect of the model mismatch is captured in this predetermined addi-

tional error term ξ 1(∆A)E0, whose size positively depends on the size of the admis-
sible perturbation.

We now design the following controls for s1 + β̂ 1t1 ≤ t < s1 +(β̂ 1 +1)t1 to drive
the system back to its autonomous state in order to offset the accumulated control
effects.

u1(t) =−BT
1 ((A+ ∆A)T )s1+(β̂ 1+1)t1−1−tz

where

z := M̂+
1 (t1,t1)

s1+β̂ 1t1−1

∑
ℓ=s1

(A +∆A)s1+β̂ 1t1−1−ℓB1u1(ℓ)

Set u2(ℓ) = 0. It can be easily verified that the state at time s1 +(β̂ 1 + 1)t1 is

x(s1 +(β̂ 1 +1)t1) = As1+(β̂1+1)t1x(0)+ e1(∆A,x(0))

where e1(·, ·) is a function defined as in the beginning of this section, which goes to
the origin as either ∆A or x(0) does so.

In contrast to the nominal system, we have an extra term e1(∆A,x(0)) in the
previous equation, which means we cannot drive the state back to the autonomous
trajectory exactly. There are going to be some errors, which disappear as the model
mismatch goes to none.

Now Station 2 starts to transmit its estimate x̂2(0) to Station 1 in the same way.
Then, at time t3 = hs1 + (β̂ 2 + 1)t2, where h is defined as in the previous section,
both stations have full estimate about the initial state, namely x̃1(0) and x̃2(0). And
the state at time t3 is located at

x(t3) = At3 x(0)+ e2(∆A,x(0))
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3.4.3 Control

After exchanging estimates of the initial state, we can design the following controls,
similar to those in the previous section, trying to drive the state back to zero in order
to shrink the uncertainty set.

ui(t) =−BT
i ((A +∆A)T )t3+n−1−tzi, t3 ≤ t ≤ t3 + n−1

where

zi := θ̂ iM̂
+
i (n,n)(A+ ∆A)t3+nx̃i(0)

with M̂+
i (·, ·) defined as the generalized inverse of M̂i(·, ·) in Eq. (3.20) and θ i =

‖M̂i‖∞(∑2
i=1‖M̂i‖∞)−1.

The size of x(t3 +n) can be similarly bounded as

‖x(t3 +n)‖∞ ≤Λ t3+n max
i=1,2
‖x(0)− x̃i(0)‖∞ +ξ 3(∆A)E0

where ξ 3(·) is defined as in the beginning of this section and it captures the effects
of model mismatch.

Now, we can state the main result of this section.

Theorem 3.2. There exists a neighborhood around the nominal system such that
for all mismatched models within this neighborhood, by employing the above con-
trol algorithm, the two-station decentralized system (3.17) with bandwidth limited
sensing channels can still be asymptotically stabilized if the following inequality is
satisfied for some number 0≤ δ < 1,

max
i, j=1,2

i 6= j

(
η j
pi
√

Ni
+

ε i
pi
√

Ni
+

ε j
p j
√

N j
+ ξ i

)
< Λ−(t3+n)(δ − ξ 3) (3.23)

where ξ 1 and ξ 2 capture the estimation errors, and ξ 3 represents the control errors
due to model mismatch. The stabilizing channel data rate Ri is then given by log2 Ni.

Proof. Again, to ensure asymptotic stability, we want ‖x(t)‖∞ → 0 as t →∞. A
sufficient condition to impose is ‖x(t3 + n)‖∞ < δE0, which is guaranteed by

max
i=1,2

(‖xi(0)− x̃i(0)‖∞) < Λ−(t3+n)(δ −ξ 3)E0

The rest is obvious. Notice that ξ i→ 0 as ‖∆A‖∞→ 0, so there exists ξ 3 ≤ δ . ⊓⊔

Remark 3.6. Again, we have computed the peak value of the bandwidth requirement
here and for this two-station case, we can still improve the result by communicating
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simultaneously. Also, it is worth noting that the larger the model mismatch is, the
higher the stabilizing data rates are demanded.

3.5 Multistation Case

For the multistation decentralized control systems, the observation and the control
phases stay the same. But the communication scheme becomes more complicated
as the number of stations grows.

If the system is strongly connected or the quotient decentralized system contains
no unstable decentralized fixed mode—in other words, if it is stabilizable under the
decentralized information structure—then our algorithm proceeds as follows: After
the observation stage, each station computes its own estimate of the initial state; then
it starts to transmit its estimate to others in a round robin fashion; i.e., Station 1 starts
to talk first, and all the other stations just listen; then Station 2 starts to transmit, and
so on. After one round, the unobservable subspace of every station gets reduced or,
in the worst case, remains the same. We need at most v− 1 rounds for a v-station
system to achieve full knowledge of the initial state by all stations. Then we can start
to design controls to bring the state back to the equilibrium point. The robustness
analysis presented in Sec. 3.4 can be directly extended to the multistation case as
well.

The drawback of this algorithm is the error propagation. As the number of sta-
tions grows, we need to wait longer and longer for the information to be exchanged.
Meanwhile, the error accumulates. This can be reduced, maybe significantly, by al-
lowing simultaneous information exchange, as we show at the end of Sec. 3.3. Our
enhanced algorithm can handle this naturally in the two-station case. But for mul-
tistation systems, the simple encoding/decoding strategy must be refined to allow
a station to differentiate measurements triggered by control actions from different
stations. This can be achieved, for example, by adding a different predetermined
base signal into the control signal sent from each station, or by allowing stations
that have disjoint controllable subspaces to transmit simultaneously.

3.6 Example

In this section, we use the algorithm developed in Sec. 3.3 to stabilize the following
system and derive the corresponding bandwidth requirements:
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x(t +1) =

[
1 0

0 2

]
x(t)+

[
1

0

]
u1(t)+

[
0

1

]
u2(t)

y1(t) =
[
0 1

]
x(t) (3.24)

y2(t) =
[
1 0

]
x(t) ‖x(0)‖∞ ≤ E0

This is a simplest nontrivial example. The system is jointly controllable and ob-
servable and it is strongly connected. Therefore, it is stabilizable under the decen-
tralized information structure. However, since the controllable subspace of any sin-
gle station coincides with its own unobservable subspace, no station can stabilize
any mode by itself. Therefore, collaboration is mandatory for stabilization. It is in-
teresting to note that although A is already in the diagonal form, the result in [10]
does not apply to this example.

The information lower bound for this system is R ≥ 1 bit/step for stabilization
purposes if centralized control is allowed.

Let us compute the upper bound on bandwidth requirement under the decen-
tralized information structure using our algorithms: first the original one, then the
enhanced version with simultaneous information exchange.

It is clear that s1 = s2 = 1 in this example. Thus, outputs yi(0), i = 1,2, are suf-
ficient for stations to reconstruct their estimates of the initial state. If there is no
quantization, then yi(0) = x(0) j, i, j = 1,2 ,and i 6= j, where x(0) j denotes the jth
component of the initial state x(0). However, the output yi is quantized with an Ni-
level quantizer on the ith channel. Then, from Lemma 3.1, Station 1 and 2 have

[
0 x̂20

]T
and

[
x̂10 0

]T

respectively, as their estimate of the initial state, where |x̂i0− x(0)i| ≤ E0/Ni for
i = 1,2.

Now we can exchange information about the initial state. Instead of constructing
β i, ti and Ei j as in Sec. 3.3, we simply choose u1(0) = x̂20 and u2(0) = 0 since the
only difference would just be a constant coefficient. Following Lemma 3.3, we have

|x(0)2− x̄20| ≤
1

N2
(2 +

1
N2

+
1

N1
)E0 +

1
N1

E0

which is also the upper bound of ‖x(0)− x̃2(0)‖∞ due the structure of K2.
Now Station 1 applies a control u1(1) =−x̂20 to drive the state x(2) to A2x(0).
During the same time, E1 and D1 run the simulation process and estimate x(2)2

as x̂22 with error bounded by |x̂22− x(2)2| ≤ 4
N3

1
E0.

Now, let u1(2) = 0 and u2(2) = x̂10. We can compute the error between Station
1’s estimate x̄10 and x(0)1, which is bounded by

|x̄10− x(0)1| ≤
8

N4
1

E0 +
1

N1
(1 +

1
N2

)E0 +
8

N3
1

E0 +
1

N2
E0
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This is also the upper bound of ‖x(0)− x̃1(0)‖∞.
Station 2 now applies a control u2(3) =−2x̂10 to drive the state back to x(4) =

A4x(0).
Now, both stations have a full estimate of the initial state, so we can design con-

trols as follows: [
u1(4)

u2(4)

]
=−

[
1 0

0 25

][
x̄10

x̄20

]

The condition of ‖x(5)‖∞ < E0 is equivalent to

max

{
8

N4
1

+
1

N1
(1 +

1
N2

)+
8

N3
1

+
1

N2
, 25

(
1

N2
(2 +

1
N1

+
1

N2
)+

1
N1

)}
< 1

The feasible rate region is given in Fig. 2(a).
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Fig. 3.2 Admissible rate regions for system (3.24).

There is a significant increase in the rate requirements compared to the central-
ized result. The upper bound of total required stabilizing data rate is R1 + R2 ≈
15.0736 bits/step.

We now proceed to use the enhanced algorithm. The first step of observation does
not change. However, we can design control u1(0) = x̂20 and u2(0) = x̂10.

Both stations can compute their estimates x̄10 and x̄20 from their measurements
and local controls. The errors are bounded by

|x̂10− x̄10| ≤ |y1(1)− ŷ1(1)|+2|x(0)2− x̂20|
|x̂20− x̄20| ≤ |y2(1)− ŷ2(1)|+ |x(0)1− x̂10|

This time the control action will be completed at time t = 3. The inequality to
satisfy is
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max

{
1

N1
(3 +

1
N2

+2
1

N1
)+

1
N2

, 23
(

1
N2

(2 +
1

N2
+

1
N1

)+
1

N1

)}
< 1

The improved rate region is plotted in Fig. 2(b). The upper bound of total required
stabilizing data rate is dropped by around 2 bits/step to 13.0008 bits/step.

3.7 Summary

In this chapter, we considered the decentralized control problem subject to finite
bandwidth constraints on sensing channels. We developed an open-loop stabilizing
control algorithm taking into account both the topological and nontopological con-
straints of the information exchange. We also provided an explicit way to construct
the associated stabilizing encoder, decoder and controller. Sufficient condition on
stabilizing data rate required on each channel was derived, while the lower bound is
currently given by the centralized result. In addition, we showed that our algorithm
is structurally robust against model mismatch; although potential measurement in-
accuracy has not been explicitly studied here, we can expect a similar degree of
algorithm tolerance to such noise.
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Chapter 4
Monotone Games for Cognitive Radio Systems

Gesualdo Scutari, Daniel P. Palomar, Francisco Facchinei and Jong-Shi Pang

Abstract Noncooperative game theory is a branch of game theory for the resolu-
tion of conflicts among interacting decision makers (called players), each behav-
ing selfishly to optimize his own well-being. In this chapter, we present a mathe-
matical treatment of (generalized) Nash equilibrium problems based on the varia-
tional inequality and complementarity approach, covering the topics of existence
and uniqueness of an equilibrium, and the design of distributed algorithms using
best-response iterations along with their convergence properties. We then apply the
developed machinery to the distributed design of cognitive radio systems. The pro-
posed equilibrium models and resulting algorithms differ in performance of the sec-
ondary users, level of protection of the primary users, computational effort and sig-
naling among primary and secondary users, convergence analysis, and convergence
speed; which makes them suitable for many different CR systems.
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4.1 Introduction

In recent years, there has been a growing interest in the use of noncooperative games
to model many communications and networking problems, where the interaction
among several agents is by no means negligible and centralized approaches are not
suitable. Examples are power control and resource sharing in wireless/wired and
peer-to-peer networks (e.g., [40, 20, 34, 6, 32, 28, 33, 36]), cognitive radio systems
(e.g., [31, 35, 26]) and distributed routing, flow and congestion control in commu-
nication networks (e.g., [1] and references therein). Two recent special issues on
the subject are [17, 18]. A more general framework suitable for investigating and
solving various optimization problems and equilibrium models, even when classical
game theory may fail, is known to be the variational inequality (VI) problem, which
constitutes a very general class of problems in nonlinear analysis [11].

Building on the VI framework, in this chapter, we present a brief treatment of two
classes of Nash problems and their application to the design of cognitive radio (CR)
systems [22]. The first class of Nash problems is Nash equilibrium problems (NEP),
where the interactions among players take place at the level of objective functions
only. The second is the class of generalized Nash equilibrium problems (GNEP),
where in addition we have that the choices available to each player also depend on
the actions taken by his rivals. We focus on the existence and global uniqueness of
equilibria and on distributed algorithms based on the best-response mapping. The
results discussed in this chapter are based on [13, 35, 38], to which we refer the
interested reader for a more comprehensive treatment of the subject.

The chapter is organized as follows. The first part—Sec. 4.2 for NEPs and Sec.
4.3 for GNEPs—is devoted to the development of general results. The second part
of the chapter—Sec. 4.4—applies those results to the design of CR systems.

4.2 Nash Equilibrium Problems (NEPs)

In a general noncooperative game, there are Q players, each of whom has a cost
function and a strategy set that may depend on the other players’ actions. In a
NEP, player i’s strategy set Qi ⊆ Rni is independent of the other players’ strate-
gies; player i’s cost function fi(xi,x−i) depends on all players’ strategies, which
are described by a vector x , (x1, . . . ,xQ), where xi is the action of the player i
and x−i , (x1, . . . ,xi−1,xi+1, . . . ,xQ) denotes the vector of all players’ strategies
variables except that of player i. The joint strategy set of the NEP is given by
Q = ∏Q

i=1Qi, whereas Q−i , ∏ j 6=iQ j . The NEP is formally defined by the tuple

G = 〈Q, f〉, with f , ( fi)
Q
i=1: The aim of player i, given the other players’ strategies

x−i, is to choose an xi ∈ Qi that minimizes his cost function fi(xi,x−i), i.e.,

minimize
xi

fi(xi, x−i)

subject to xi ∈ Qi.
(4.1)
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Roughly speaking, a NEP is a set of coupled optimization problems.

Definition 4.1. A pure strategy Nash equilibrium (NE), or simply a solution of the
NEP, is a feasible point x⋆ such that

fi(x⋆
i , x⋆

−i)≤ fi(xi,x⋆
−i), ∀xi ∈ Qi (4.2)

holds for each player i = 1, . . . ,Q. �

In words, a NE is a feasible strategy profile x⋆ with the property that no single
player can benefit from a unilateral deviation from x⋆

i . A useful way to see a NE
is as a fixed-point of the best-response mapping for each player. Let Bi(x−i) be the
(possibly empty) set of optimal solutions of the ith optimization problem (4.1) and
set B(x) ,B1(x−1)×B2(x−2)×·· ·×BQ(x−Q). It is clear that a point x⋆ is a NE if
and only if it is a fixed point of B(x), i.e., if and only if x⋆ ∈ B(x⋆). This observation
is the key to the standard approach to the study of NEPs: the so called fixed-point
approach, which is based on the use of the well-developed machinery of fixed-point
theory. This approach is adopted in the analysis of several games proposed in the
signal processing and communication literature (see, e.g., [40, 8, 34, 6, 28, 33, 32,
36] and [31, 35]). However, the applicability of the fixed-point based analysis as
used in the aforementioned papers requires that one be able to compute the best-
response mapping B(x) in closed form, a fact that strongly limits the applicability
of this methodology.

In this chapter, we overcome this limitation by studying NEPs through their re-
duction to a VI problem. This approach is pursued also in [25, 27, 13, 38, 39] and,
resting on the well developed theory of VIs, has the advantage of permitting an easy
derivation of many results about existence, uniqueness, and stability of the solu-
tions. But its main benefit is probably that it leads quite naturally to the derivation
of implementable solution algorithms along with their convergence properties [38].

4.2.1 Connection to Variational Inequalities

The basis of the VI approach to NEPs is the easy equivalence between a NEP and a
suitably defined partitioned VI. The (partitioned) VI problem is defined next. Given
Q defined as in Sec. 4.2, let F : Ω ⊃Q→ Rn be a continuous function on

Ω ,
Q

∏
i=1

Ωi

with each Ωi being an open subset of Rni containingQi, and

n ,
Q

∑
i=1

ni
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We write F(x) = (Fi(x))Q
i=1 where Fi : Ω →Rni is the ith component block function

of F.

Definition 4.2. The variational inequality, denoted by VI(Q,F), is to find a vector
x⋆ ∈ Q such that [11, Def. 1.1.1]

(x− x⋆)
T F(x⋆)≥ 0, ∀x ∈ Q. (4.3)

The set of solutions to this problem is denoted SOL(Q,F).

Several standard problems in nonlinear programming, game theory and nonlinear
analysis can be formulated naturally as VI problems; many examples can be found
in [11, Ch. 1], [19, 37]. In particular, the equivalence between NEPs and VIs is
given in the following proposition, whose proof follows readily from the minimum
principle for convex problems and the Cartesian structure of the joint strategy setQ
[11, Prop. 1.4.2].

Proposition 4.1. Given the NEP G = 〈Q, f〉, suppose that for each player i the fol-
lowing hold:

i) The (nonempty) strategy set Qi is closed and convex;
ii) For every fixed x−i ∈Q−i, the payoff function fi(xi,x−i) is convex and contin-

uously differentiable in xi ∈Ωi ⊃Qi.

Then, the game G is equivalent to the VI(Q,F), where F(x) , (∇xi fi(x))Q
i=1.

Building on the VI reformulation above and the well-developed framework of
VIs, we focus on the main properties of the NEP, namely: the existence and unique-
ness of the solution and the design of distributed algorithms along with their con-
vergence properties. To this end, throughout the chapter we make the following
convexity/smoothness assumption.

Assumption 4.1. For each i = 1, . . . ,Q, the set Qi ⊂ Ωi is a nonempty, closed and
convex subset of Rni and the function fi(xi,x−i) is convex in xi ∈ Qi for every
fixed x−i ∈ Q−i and twice continuously differentiable in x ∈ Ω ⊃ Q = ∏iQi with
bounded second derivatives onQ.

Remark 4.1 (On Assumption 4.1). For the purpose of this chapter, it is enough to
focus only on games that satisfy Assumption 4.1 (all the games we study in the
second part of the chapter satisfy this condition indeed). However, the assumption
can be relaxed, following the techniques developed in [13].

4.2.2 Solution Analysis of the NEP

The solution analysis of a NEP can be carried out in several ways. Here, we address
this issue by using the equivalence between the NEP G and the VI(Q,F) illustrated
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in Proposition 4.1. Some of the results in this section (especially those related to ex-
istence) could be obtained under weaker assumptions; however, our derivation based
on the VI reformulation is interesting in its own right and furthermore prepares the
ground work for the algorithmic developments of the next sections. We begin our
analysis by introducing some basic definitions.

Definition 4.3. A mapping F = (Fi(x))Q
i=1 : Ω ⊃Q∋ x→Rn is

(i) monotone on Q if for all x and y in Q,

(x−y )T (F(x)−F(y)) ≥ 0; (4.4)

(ii) strictly monotone onQ if for all x 6= y in Q the inequality in (4.4) is strict;
(iii) strongly monotone on Q if a constant csm > 0 exists such that for all x and y

in Q,
(x− y)T (F(x)−F(y)) ≥ csm ‖x− y‖2. (4.5)

The constant csm is called the strong monotonicity constant of F;
(iv) a uniform P-function on Q = ∏iQi if a constant cuP > 0 exists such that for

all x = (xi)
Q
i=1 and y = (yi)

Q
i=1 in Q,

max
1≤ i≤Q

(xi− yi )
T (Fi(x)−Fi(y)) ≥ cuP ‖x−y‖2. (4.6)

Among the above monotonicity properties, the following relations hold:

strongly monotone⇒uniform P⇒strictly monotone⇒monotone. (4.7)

Monotonicity properties in the VI realm play the same role that convex functions
play in optimization. In fact, we recall that a differentiable function f is convex
(strictly convex, strongly convex) on a convex set Q if and only if its gradient is
monotone (strictly monotone, strongly monotone) on Q. The next theorem collects
some rather standard results on solution properties of a VI [11]; thanks to Proposi-
tion 4.1, these results readily extend to NEPs.

Theorem 4.1. Given the NEP G =<Q, f>, suppose that G satisfies Assumption 4.1
and let F(x) , (∇xi fi(x))Q

i=1. Then the following statements hold:

(a) The VI(Q,F) (the NEP G) has a (possibly empty) closed solution set. If all
strategy sets Qi are bounded, the solution set is nonempty and thus compact;

(b) If F(x) is monotone onQ, then the VI(Q,F) (the NEP G) has a convex solution
set (possibly empty);

(c) If F(x) is strictly monotone on Q, then the VI(Q,F) (the NEP G) has at most
one solution;

(d) If F(x) is a uniformly-P function (or strongly monotone) on Q, then the
VI(Q,F) (the NEP G) has a unique solution.

Note that the uniqueness results stated in parts (c) and (d) do not require that the
set Q be bounded. Some sufficient conditions for F(x) being a (strictly, strongly)
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monotone or a uniformly-P function are given in the next section (see [38] for more
details).

4.2.3 Monotonicity Conditions for the Vector Function F

Assuming that F is continuously differentiable on Ω , let JF(x) =
(
Jx j Fi(x)

)Q

i, j=1
be

the Jacobian of F, where Jx j Fi(x) is the partial Jacobian matrix of Fi with respect

to the x j vector. Note that when F(x) = (∇xi fi(x))
Q
i=1, with each fi : Ωi 7→ R being

a continuously differentiable function on Ωi, we have Jx j Fi(x) = ∇2
xix j

fi(x), for

i, j = 1, . . . ,Q, where JxiFi(x) =∇2
xixi

fi(x) is the Hessian matrix of fi.
It is well known and easy to show [24] that the following relations exist among

the monotonicity properties of F and the definiteness properties of the Jacobian
matrix JF.

i) F(x) is monotone on Q ⇔ JF(x)� 0, ∀x ∈ Q;

ii) F(x) is strictly monotone on Q ⇐ JF(x)≻ 0, ∀x ∈ Q;

iii) F(x) is strongly monotone onQ ⇔ JF− csm I� 0, ∀x ∈ Q
(4.8)

where A� B (A≻ B) means that A−B is a positive semidefinite (definite) matrix.
In some applications we consider later (cf. Sec. 4.4), it is useful to have at hand some
further sufficient conditions that guarantee monotonicity properties of F. Below we
give two such conditions. Let define the matrix JFlow having the same dimension of
JF(x) as

[JFlow]rs ,






inf
x∈Q

[JF(x)]rr , if r = s,

− sup
x∈Q

∣∣[JF(x)]rs

∣∣ , otherwise,
(4.9)

and let introduce the “condensed” Q×Q real matrices ϒ F and Γ F , given by

[ϒ F]i j ,

{
αmin

i , if i = j,

−β max
i j , otherwise,

(4.10)

and

[Γ F]i j ,






1

1 + αmin
i

, if i = j,

β max
i j

1 + αmin
i

, otherwise,

(4.11)

where

αmin
i , inf

z∈Q
λ least (Jxi Fi(z)) and β max

i j , sup
z∈Q
‖JxiF j(z)‖ , (4.12)
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with λ least (A) denoting the least eigenvalue of A.1 In order to explore the relation-
ship between the two matrices ϒ F and Γ F , we need the following definition.

Definition 4.4. A matrix M ∈ Rn×n is called P-matrix if every principal minor of
M is positive.

Many equivalent characterizations for a P-matrix can be given. The interested
reader is referred to [7, 4] for more details. Here we note that any positive definite
matrix is a P-matrix, but the reverse does not hold (unless the matrix is symmetric).

Building on the properties of the P-matrices [7, Lemma 13.14], one can show that
ϒ F is a P-matrix if and only if ρ(Γ F) < 1, where ρ(A) denotes the spectral radius of
A. The P-property of matrix ϒ F will be used to prove the uniqueness of the equilib-
rium of Nash games as well as the convergence of some of the proposed distributed
algorithms. The positive definiteness property of ϒ F and the strong monotonicity
constant csm of F will be exploited to study the GNEPs in Sec. 4.3. Matrices JFlow

and ϒ F are also instrumental towards obtaining sufficient conditions for the mono-
tonicity of the mapping F (more results and milder conditions can be found in [38]),
as given next.

Proposition 4.2. Let F : Ω⊃Q→ Rn be continuously differentiable with bounded
derivatives onQ. The following statements hold:

(a) If either JFlow or ϒ F are positive semidefinite, then F is monotone on Q;
(b) If either JFlow or ϒ F are positive definite, then F is strongly monotone on Q,

with strong monotonicity constant given by either csm = λ least (JFlow) or csm =
λ least (ϒF) ;

(c) Let F = (Fi(x))Q
i=1 : Ω = ∏i Ωi ⊃ Q = ∏iQi ∋ x→Rn. If ϒ F is a P-matrix,

then F is a uniformly P-function onQ, for some positive cuP.

A lower bound of cuP is given in [38].

Remark 4.2 (On the uniqueness of the NE (cont’d)). Invoking Theorem 4.1 and
Proposition 4.2, one can readily obtain sufficient conditions for the uniqueness of
the NE of the game G. According to Theorem 4.1(d) and Proposition 4.2(c) indeed,
the NE of G is unique if the matrix ϒ F in (4.10) with F(x) = (∇xi fi(x))Q

i=1 is a
P-matrix. It turns out that this condition is sufficient also for global convergence
of best-response asynchronous distributed algorithms described in Sec. 4.2.4.1. To
give additional insight into the uniqueness of the NE of G we provide the following
diagonal dominance-type conditions for the matrix ϒ F to be a P-matrix (positive
definite).

Proposition 4.3. The matrix ϒ F in (4.10) is a P-matrix (positive definite) if one of
(both) the following two sets of conditions are satisfied: for some w = (wi)

Q
i=1 > 0,

1
wi

∑
j 6=i

w j
β max

i j

αmin
i

< 1, ∀i = 1, · · · ,Q,
1

w j
∑
i 6= j

wi
β max

i j

αmin
i

< 1, ∀ j = 1, · · · ,Q. (4.13)

1 The least eigenvalue of a real (not necessarily symmetric) matrix A is the smallest eigenvalue of
the symmetric part of A.
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Note that if ϒ F is a P-matrix, it must be

αmin
i = inf

z∈Q

[
λ min(∇2

xi
fi(z))

]
> 0

for all i, where λ min(∇2
xi

fi(z)) denotes the minimum eigenvalue of ∇2
xi

fi(z). Thus
an implicit consequence of the P assumption of the matrix ϒ F is the uniform pos-
itive definiteness of the matrices ∇2

xi
fi on Q, which implies the uniformly strong

convexity of fi(·, x−i) for all x−i ∈ Q−i.

4.2.4 Distributed Algorithms for Nash Equilibria

In this section, we discuss some iterative algorithms for computing a NE of NEP
(a solution of the VI). For the purposes of this chapter we restrict our attention to
distributed algorithms, with special emphasis to best-response iterative algorithms.

4.2.4.1 Best Response Decomposition Algorithms

We focus on asynchronous-iterative algorithms, since they are particularly suitable
for CR applications. More specifically, we consider totally asynchronous schemes
(in the sense specified in [5]), where some players may update their strategies more
frequently than others and they may even use an outdated information about the
strategy profile used by the others. To provide a formal description of the algorithm,
we need to introduce some preliminary definitions. Let Ti ⊆ T ⊆ {0,1,2, . . .} be

the set of times at which player i updates his own strategy xi, denoted by x(n)
i (thus,

implying that, at time n /∈ Ti, x(n)
i is left unchanged). Let t i

j(n) denote the most
recent time at which the strategy profile of player j is perceived by player i at the
nth iteration (observe that t i

j(n) satisfies 0≤ t i
j(n)≤ n). Hence, if player i updates his

strategy at the nth iteration, then he minimizes his cost function using the following
(possibly) outdated strategy profile of the other players:

x(ti(n))
−i ,

(
x(ti

1(n))
1 , . . . ,x

(ti
i−1(n))

i−1 ,x
(ti

i+1(n))
i+1 , . . . ,x

(ti
Q(n))

Q

)
. (4.14)

Some standard conditions in asynchronous convergence theory, which are fulfilled
in any practical implementation, need to be satisfied by the schedule Ti and t i

j(n);
we refer to [5, 32] for the details. Throughout the chapter we assume that these
conditions are satisfied and call feasible such an updating schedule. Using the above
definitions, the totally asynchronous algorithm based on the best-responses of the
players is described in Algorithm 4.1. The convergence properties of the algorithm
are given in Theorem 4.2.
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Theorem 4.2 ([38]). Let G=<Q, f > satisfy Assumption 4.1 and let F =(∇xi fi)
Q
i=1.

If ϒ F defined in (4.10) is a P-matrix, any sequence {x(n)}∞n=0 generated by the
asynchronous best-response algorithm described in Algorithm 4.1 converges to the
unique NE of G, for any given updating feasible schedule of the players.

Algorithm 4.1: Asynchronous Best-Response Algorithm

Data : Choose any feasible starting point x(0) = (x(0)
i )Q

i=1; set n = 0.
(S.1) : If x(n) satisfies a suitable termination criterion: STOP
(S.2) : For i = 1, . . . ,Q, compute x(n+1)

i as

x(n+1)
i =





x⋆
i ∈ argmin

xi∈Qi

fi

(
xi, x(ti(n))

−i

)
, if n ∈ Ti

x(n)
i , otherwise

(4.15)

end
(S.3) : n← n +1; go to (S.1).

Remark 4.3 (Flexibility of the algorithm). Algorithm 4.1 contains as special cases
a plethora of algorithms, each one obtained by a possible choice of the schedul-
ing of the users in the updating procedure (i.e., the parameters {tq

r (n)} and {Tq}).
Examples are the sequential (Gauss–Seidel scheme) and the simultaneous (Jacobi
scheme) updates, where the players update their own strategies sequentially and
simultaneously, respectively. Interestingly, Theorem 4.2 states that all these algo-
rithms are robust against missing or outdated updates of the players and are guaran-
teed to converge to the unique NE of the game under the same set of convergence
conditions, since the matrix ϒ F (or ΓF) does not depend on the particular choice of
{tq

r (n)} and {Tq}. This feature strongly relaxes the constraints on the synchroniza-
tion of the players’ updates, which makes this class of algorithms appealing in many
practical distributed systems.

Remark 4.4 (On the convergence conditions of best-response algorithms). We have
pointed out that the P property of ϒF (or equivalently ρ(ΓF) < 1) cannot be satisfied
even if there is just one point where one player has a payoff function with singular
Hessian. In fact, if this is the case, we have, αmin

i = 0 for some i, let us say i = 1
without loss of generality, which implies that the matrix Γ F has a 1 in the left upper
corner. Since the matrix ΓF is nonnegative, we have that this implies ρ(ΓF) ≥ 1
[3, Th. 1.7.4]. Assuming that the element 1 is contained in an irreducible principal
matrix, we will actually have ρ(ΓF) > 1. Note that the irreducibility assumption
is extremely weak and trivially satisfied if the matrix ΓF is positive, which is true
in most of our applications. We thus focus in the next subsection on alternative
distributed algorithms that are guaranteed to converge under milder assumptions that
do not require the strict or strong convexity of the payoff functions. These milder
conditions required on F to have convergence are traded for a slightly increasing
computational/signaling complexity.
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4.2.4.2 Proximal Decomposition Algorithms for Monotone VIs

We focus now on distributed algorithms whose convergence is guaranteed under the
monotonicity assumption on the mapping F = (∇xi fi)

Q
i=1. Let us introduce first the

following assumption.

Assumption 4.2. The mapping F = (∇xi fi)
Q
i=1 is monotone onQ=Q1× . . .×QQ.

According to Proposition 4.1, solving the NEP G =< Q, f > is equivalent to
solving the VI(Q,F) that, under Assumption 4.2, is monotone. This can be done in
a host of ways (see, e.g., [11, Vol. II]) but not directly by decomposition methods.
Here our interest is on devising distributed solution methods. To pursue this goal, we
propose the following approach. We consider a regularization of the VI(Q,F), given
by VI(Q,F+τ(I−y)), where I is the identity map (i.e., I : x→ x), y is a fixed vector
in Rn, and τ is a positive constant. Under Assumption 4.2, this regularized problem
is strongly monotone and thus has a unique solution (cf. Theorem 4.1); we denote
by Sτ (y) , SOL(Q,F+ τ(I−y)) such a unique solution. The relationship between
the original game G =<Q, f > and the regularized VI is given in the following.

Lemma 4.1. Given the game G =< Q, f >, suppose that Assumptions 4.1 and 4.2
hold. A tuple x⋆ ∈Q is a NE of the game if and only if it is a fixed point of the vector
function Sτ (y), i.e., x⋆ = Sτ (x⋆).

Under the monotonicity of F, the mapping Sτ(y) can be shown to be nonexpan-
sive, meaning that, starting at a given iterate y(0) ∈ Q, the sequence generated by a
proper averaging of Sτ(y(n)) and y(n) converges to a solution of the VI(Q,F). This
idea is formalized in Algorithm 4.2 below, whose convergence properties are given
in Theorem 4.3. Note that the convergence of the algorithm requires only the mono-
tonicity of F. Moreover, one can also replace the exact computation of the solution
Sτ(x(n)) (see step 2) of the regularized VI(Q,F + τ(I− x(n))) with an inexact so-
lution, without affecting the convergence of Algorithm 4.2 (provided that the error
bound goes to zero as n→∞).

Algorithm 4.2: Proximal Decomposition Algorithm (PDA)

Data : Let {εn}∞n=0, {ρn}∞n=0, and τ > 0 be given, and choose any feasible
starting point x(0); set n = 0.
(S.1) : If x(n) satisfies a suitable termination criterion: STOP.
(S.2) : Find a point z(n) such that ‖z(n)−Sτ(x(n))‖ ≤ εn.
(S.3) : Set x(n+1) , (1−ρn)x

(n) +ρnz(n) .
(S.4) : n← n +1; go to (S.1).

Theorem 4.3 ([38]). Let G =< Q, f > satisfy Assumptions 4.1 and 4.2 and let
F , (∇xi fi)

Q
i=1. Let {εn} ⊂ [0,∞) be a sequence such that ∑∞

n=1 εn <∞, and let ρn

be such that {ρn} ⊂ [Rm,RM] with 0 < Rm ≤ RM < 2. Then, the sequence {x(n)}∞n=0
generated by the proximal decomposition algorithm described in Algorithm 4.2 con-
verges to a solution of the game G.
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A key point now becomes how to compute, for any given x(n), a(n approximated)
solution Sτ (x(n)) of the regularized VI(Q,F + τ(I− x(n))) in a distributed way.
The interesting point is that, going backwards by applying Proposition 4.1 to the
VI(Q,F + τ(I− x(n))), one can see that Sτ (x(n)) coincides with the unique (under
Assumption 4.2) NE of the following regularized game:

minimize
xi

fi(xi, x−i)+ τ
2‖xi− x(n)

i ‖2

subject to xi ∈Qi

∀i = 1, . . . ,Q. (4.16)

It turns out that Sτ (x(n)) can be computed in a distributed way using any iterative
algorithm falling in class of asynchronous algorithms described in Algorithm 4.1
and applied to the regularized game in (4.16); Theorem 4.2 states that such a class
of algorithms globally converges if the matrix

ϒ F,τ , ϒ F + τI, (4.17)

with ϒ F defined in (4.10), is a P-matrix, which is guaranteed for any τ sufficiently
large. Stated in mathematical terms, we have the following.

Corollary 4.1 ([38]). In the setting of Theorem 4.3, if τ is chosen sufficiently large
so that ϒ F,τ is a P-matrix, then any asynchronous best-response algorithm (see Al-
gorithm 4.1) applied to the game in (4.16) converges to Sτ(x(n)).

The only thing left to discuss at this point is how to check whether the condition
‖z(n)−Sτ(x(n))‖ ≤ εn in step 2 is satisfied. This certainly can be accomplished, but
it is a rather technical issue and we refer to [38] for practical implementations of
this check, under a different level of signaling and supervision.

Remark 4.5 (On the structure of Algorithm 4.2). Algorithm 4.2 is only conceptually
a double loop method. It is indeed very close to the iterative best-response algorithm
applied to game (4.16) (see Algorithm 4.1); the only difference being that “from
time to time” (more precisely when the inner termination test ‖z(n)−Sτ (x(n))‖ ≤
εn is satisfied), the objective functions of the players are changed by changing the

regularizing term from τ
2‖xi− x(n)

i ‖2 to τ
2‖xi− x(n+1)

i ‖2.
Note that Algorithm 4.2 does not suffer of the main drawback of best-response

based schemes (cf. Remark 4), since the convergence conditions as given in Theo-
rem 4.3 do not require the strong convexity of the payoff functions fi(·,x−i). The
only (sufficient) condition we need is the monotonicity of F = (∇xi fi)

Q
i=1 on Q (cf.

Proposition 4.2).

4.3 Generalized Nash Equilibrium Problems (GNEP)

In all previous developments we have assumed that the feasible set of each player
is independent of the rival players’ choices, but this is not always the case. There
are many applications of interest where the feasible sets naturally depend on the
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variables of the player’s rivals (see, e.g., Sec. 4.4). The GNEP extends the classical
NEP setting described so far precisely by assuming that each player’s strategy set
can depend on the rival players’ strategies x−i. In order to describe a GNEP we
denote by Qi(x−i) ⊆ Rni the feasible set of player i when the other players choose
x−i. Analogously to the NEP case, the aim of each player i, given x−i, is to choose
a strategy xi ∈ Qi(x−i) that solves the problem

minimize
xi

fi(xi,x−i)

subject to xi ∈Qi(x−i).
(4.18)

Definition 4.5. A generalized Nash equilibrium (GNE), or simply a solution of the
GNEP, is a feasible point x⋆ such that

fi(x⋆
i ,x

⋆
−i)≤ fi(xi,x⋆

−i), ∀xi ∈ Qi(x⋆
−i) (4.19)

holds for each player i = 1, . . . ,Q.

Due to the variability of the feasible sets, the GNEP is a much harder problem
than an ordinary NEP. Indeed, in its full generality, the GNEP problem is almost
intractable and also the VI approach is of no great help. We then restrict our attention
to particular classes of (more tractable) equilibrium problems: the so-called GNEPs
with jointly convex shared constraints (see [10] for a survey on GNEPs).

Definition 4.6. A GNEP is termed as GNEP with jointly convex shared constraints
if the feasible sets are defined as

Qi(x−i) ,
{

xi ∈ Qi : g(xi,x−i)≤ 0
}

, (4.20)

where Qi ⊆ Rni is the closed and convex set of individual constraints of player i
and g(xi,x−i)≤ 0 represents the set of shared coupling constraints (equal for all the
players), with g , (g j)

m
j=1 : Rn→Rm (jointly) convex in x.

Note that if there are no shared constraints the problem reduces to a standard
NEP. We can give a geometric interpretation to (4.20), as shown next. For a GNEP
with shared constraints, let us define a set Q in the product space of all players:

Q,
{

x ∈Rn : g(x)≤ 0 and xi ∈ Qi, ∀i = 1, . . . ,Q
}

. (4.21)

It is easy to check that the set Q is closed and convex and that each feasible set is
just a “slice” of the “big” set Q:

Qi(x−i) =
{

xi ∈ Qi : g(xi,x−i)≤ 0
}

= {xi ∈ Rn : (xi,x−i) ∈ Q}. (4.22)

Similarly to the NEP, throughout the chapter we make the following convex-
ity/smoothness assumption for the GNEP with shared constraints.

Assumption 4.3. For each i = 1, . . . ,Q, the setQi is a nonempty, closed and convex
subset of Rni and the function fi(xi,x−i) is twice continuously differentiable in x and
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convex in xi for every fixed x−i; the functions g(x) = (g j(x))m
j=1 are continuously

differentiable and jointly convex in x.

4.3.1 Connection to VIs: The Variational Solutions

GNEPs with shared constraints are still very difficult, but some types of solutions
can be studied and calculated relatively easily by using a VI approach. More specif-
ically, invoking the minimum principle, one can readily obtain the following con-
nection between GNEPs and VIs (see, e.g., [9, 2]).

Lemma 4.2. Let G =<Q, f > be a GNEP with shared constraints. Suppose that G
satisfies Assumption 4.3 and let VI(Q,F) be the VI with Q defined in (4.21) and
F , (∇xi fi)

Q
i=1. Then, every solution of the VI(Q,F) is a solution of the GNEP G.

Note that in passing from the GNEP to the associated VI not all the GNEP solu-
tions are preserved: Lemma 4.2 in fact does not state that any solution of the GNEP
is also a solution of the VI (see [9, 2, 12] for further details and examples). Solu-
tions of the GNEP that are also solutions of the VI(Q,F) are termed as variational
solutions [10] or normalized solutions [29]. Variational solutions enjoy some re-
markable properties that make them particularly appealing in many applications. To
discuss this issue further, assume that we have a GNEP with jointly convex shared
constraints satisfying Assumption 4.3 and that some constraint qualification (CQ)
(see, e.g., [11, Sec. 3.2]) holds at all elements in every setQi(x−i) defined in (4.22).
Under these assumptions the GNEP is equivalent to its KKT system that is ob-

tained by concatenating the Karush-Kuhn-Tucker (KKT) conditions of the convex
optimization problem in (4.18) of each player: x⋆ is a solution of the GNEP if and
only if there exist multipliers λ ⋆ = (λ (i)⋆)Q

i=1 ∈RQm
+ such that

0 ∈∇xiLi(x⋆
i ,x

⋆
−i,λ

(i)⋆)+N (x⋆
i ,Qi)

0≤ λ ⋆(i) ⊥ g(x⋆)≤ 0
∀i = 1, . . . ,Q, (4.23)

where
Li(xi,x−i,λ (i)) , fi(x)+ λ (i)T g(x) (4.24)

is the Lagrangian function of player i’s optimization problem (4.18), with λ (i) =

(λ (i)
k )m

k=1 denoting the multipliers of the shared constraints g(x)≤ 0, andN (x⋆
i ,Qi)

,
{

d ∈Rni : dT (y−x⋆
i )≤ 0, ∀y ∈ Qi

}
is the normal cone toQi at x⋆

i . Similarly,
assume some suitable CQ at all elements in the set Q defined in (4.21). Then, the
VI(Q,F), with F , (∇xi fi)

Q
i=1, is equivalent to its KKT system [11]: x̄ is a solution

of the VI(Q,F) if and only if there exist multipliers λ̄ ∈Rm
+ such that

0 ∈∇xiLi
(
x̄i, x̄−i, λ̄

)
+N (x̄i,Qi), ∀i = 1, . . . ,Q

0≤ λ̄ ⊥ g(x̄)≤ 0
(4.25)
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Comparing (4.23) with (4.25) it is not difficult to see that the KKT system (4.25)
is a special case of (4.23) with λ ⋆(1) = · · · = λ ⋆(Q) = λ , meaning that a solution x
of the GNEP is a variational solution if and only if the shared constraints have the
same multipliers for all the players. More formally, we have the following.

Lemma 4.3. Let G =< Q, f > be a GNEP with shared constraints satisfying As-
sumption 4.3, and let VI(Q,F) be the VI withQ defined in (4.21) and F , (∇xi fi)

Q
i=1.

Then, the following hold:
(i) Suppose that x is a solution of the VI(Q,F) at which the KKT (4.25) holds with
multipliers λ . Then x is a solution of the GNEP at which the KKT (4.23) holds with
λ ⋆(1) = · · · = λ ⋆(Q) = λ ;
(ii) Conversely, suppose that x⋆ is a solution of the GNEP at which the KKT (4.23)
holds with λ ⋆(1) = · · · = λ ⋆(Q). Then x⋆ os a solution of the VI(Q,F) and the pair
(x⋆,λ ⋆(1)) satisfies the KKT (4.25).

The importance of Lemmas 4.2 and 4.3 is twofold. First, we can use VI results
as given in Sec. 4.2 (see also [11, Sec. 2]) to obtain practical conditions ensuring
the existence and the uniqueness of variational solutions for a GNEP with shared
constraints; we leave to the reader the easy task of duplicating these results. Second,
Lemma 4.3 gives rise to an interesting game theoretical pricing-based interpretation
of the variational solutions, useful for design of distributed algorithms, as detailed
in the next section.

4.3.2 Distributed Algorithms for Variational Solutions

In this section, we develop distributed algorithms to compute the variational so-
lutions of a GNEP with jointly convex shared constraints. The presence of the
coupling constraints g(x) ≤ 0 prevents a direct application of the decomposition
methods presented in Sec. 4.2.4 to the VI(Q,F), because Q does not have a Carte-
sian structure. To overcome this issue, we rewrite the VI(Q,F) in a more conve-
nient form, as detailed next. Consider the problem of finding a couple (x̄, λ̄ ), with
λ̄ = (λ̄ k)

m
k=1 such that x̄ solves the NEP

Gλ̄ :
minimize

xi
fi(xi,x−i)+ λ̄ T

g(x)

subject to xi ∈Qi,
∀i = 1, . . . ,Q, (4.26)

and furthermore
0≤ λ̄ ⊥ g(x̄)≤ 0. (4.27)

We can interpret the λ̄ as prices paid by the players for using the common “resource”
represented by the shared constraints. Condition (4.27) says that the players actually
have to pay only when the resource becomes scarce. In the following we refer to the
NEP in (4.26) with fixed vector λ as Gλ . A direct comparison of the KKT conditions
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of NEP (4.26) augmented with condition (4.27) and the KKT conditions (4.25) leads
to the following interesting result.

Lemma 4.4. Suppose that the GNEP with shared constraints G =<Q, f > satisfies
assumptions in Lemma 4.2 and some CQ holds at all the elements in the set Q
defined in (4.21). Then, (x̄, λ̄ ) is a solution of the problem (4.26)–(4.27) if and only
if x̄ is a variational solution of the GNEP—the VI(Q,F), with F = (∇xi fi)

Q
i=1—and

λ̄ is the corresponding multiplier of the shared constraints.

Based on Lemma 4.4 we are now able to compute the variational solutions of the
GNEP as solutions of (4.26)–(4.27), to which we can apply in principle the theory
developed in Sec. 4.2. Similarly to the NEP case, we consider both cases of strongly
monotone (uniformly P) and monotone games.

4.3.2.1 Algorithms for Strongly Monotone Pricing Games

To describe the proposed algorithms we need the following preliminary definitions
and results. Under the convexity of the shared constraints g(x) and the positive defi-
niteness of matrix ϒ F defined in (4.10), which implies the strongly monotonicity of
F = (∇xi fi)

Q
i=1 (see Proposition 4.2), the game Gλ in (4.26)—the strongly monotone

VI(Q,F +∇xgλ), with Q , ∏Q
i=1Qi and ∇xg denoting the matrix whose ith col-

umn is equal to∇xgi—has a unique NE x⋆(λ ) for any λ ≥ 0. Under this condition,
let define the map

Φ(λ ) : Rm
+ ∋ λ →−g (x⋆(λ )) (4.28)

which measures the (negative) violation of the shared constraints at x⋆(λ ).
Based on (4.26)–(4.27), the key result to devise distributed algorithms is given

in Theorem 4.4 below, where F = (∇xi fi)
Q
i=1, x⋆(λ ) denotes the unique NE of Gλ

(under the positive definiteness of matrix ϒ F), and ϒ F, Q, and Φ are defined in
(4.10), (4.21) and (4.28), respectively.

Theorem 4.4 ([38]). Given the problem (4.26)–(4.27), suppose that Assumption 4.3
and some CQ at all elements of the set Q hold true. If ϒ F ≻ 0, then the following
hold:
(a) The problem (4.26)–(4.27) is equivalent to the nonlinear complementarity prob-
lem (NCP) in the price tuple λ

NCP(Φ) : 0≤ λ ⊥ Φ(λ ) ≥ 0 (4.29)

The equivalence is in the following sense: the NCP(Φ) must have a solution, and for
any such a solution λ NCP the pair (x⋆(λ NCP),λ NCP) is a solution of (4.26)–(4.27),
with x⋆(λ NCP) = xVI, where xVI is the unique solution of the VI(Q,F); conversely, if
(xNE,λ NE) is a solution of (4.26)-(4.27) [xNE = SOL(Q,F)], then λ NE is a solution
of the NCP(Φ) with x⋆(λ NE) = xNE; (b) The problem (4.26)–(4.27) has a unique
least-norm price tuple, denoted by λ NE,ln, such that ‖λ NE,ln‖2 ≤ ‖λ NE‖2 for any
price solution λ NE of (4.26)-(4.27).
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Remark 4.6 (On the uniqueness of the solution). Observe that, under ϒ F ≻ 0, The-
orem 4.4(a) implies only the uniqueness of the variables x of the problem (4.26)–
(4.27) [the primal variables of the VI(Q,F)], but not of the price tuple λ . The in-
teresting result is that, in such a case, all these prices λ NCP—the solutions of the
NCP(Φ)—yield solution pairs (x⋆(λ NCP),λ NCP) of (4.26)–(4.27) having the same
optimal xNE, i.e., x⋆(λ NCP) = xNE. Part (b) of the theorem identifies a unique special
price tuple λ NE,lm.

The NCP reformulation of the problem (4.26)–(4.27) as stated by Theorem 4.4
offers the possibility of devising iterative algorithms that can be implemented in
a distributed fashion among all players (because the feasible set of the NCP has
a Cartesian structure) and whose convergence can be studied using known results
from the theory of VIs (cf. [11, Chapter 12]). An example is the projection algorithm
with variable steps [11, Alg. 12.1.4] applied to the NCP(Φ) in (4.29) and formally
described in Algorithm 4.3 (under the assumption ϒ F ≻ 0), where Q = ∏iQi and
F = (∇xi fi)

Q
i=1. The convergence properties of the algorithm are given in Theorem

4.5. For other algorithms we refer to [26, 38, 39].

Algorithm 4.3: Projection Algorithm with Variable Steps (PAVS)

Data : Choose any λ (0) ≥ 0; set n = 0.
(S.1) : If λ (n) satisfies a suitable termination criterion: STOP.

(S.2) : Given λ (n), compute x⋆
(

λ (n)
)

as the unique NE of Gλ (n) :

x⋆(λ (n)) = SOL(Q, F +∇xgλ (n)). (4.30)

(S.3) : Choose τn > 0 and update the price vectors λ according to

λ (n+1) =
[
λ (n)− τn Φ

(
λ (n)

)]+
. (4.31)

(S.4) : Set n← n +1; go to (S.1).

Theorem 4.5 ([38]). Suppose ϒ F ≻ 0. If the scalars τn are chosen so that 0 <
infn τn ≤ supn τn < 2csm/c2

Lip, with cLip , maxx∈Q
∥∥∇xg(x)T

∥∥
2 and csm defined

in Proposition 4.2(b), then the sequence {λ (n)}∞n=0 generated by Algorithm 4.3 con-
verges to a solution of the NCP(Φ).

Remark 4.7 (On the convergence of the inner loop via distributed algorithms). The
implementation of Algorithm 4.3 requires the computation of the solution of the
Gλ (n) (4.30) for a given set of prices, possibly in a distributed way. Given λ ≥ 0, the
game Gλ is a NEP and thus one can solve it by using any of the algorithms proposed
in Sec. 4.2.4 for NEPs. We refer to [38] for a detailed study of the convergence of
asynchronous algorithms applied to the VI(Q, F +∇xgλ (n)). The interesting result
is that, when the vector function g(x) is separable, i.e., g(x)= ∑Q

i=1 gi(xi), conditions
in Theorem 4.5 are sufficient for the convergence of both loops in Algorithm 4.3.
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4.3.2.2 Algorithms for Monotone Pricing Games

We focus now on the case in which the problem (4.26)–(4.27) (the associated VI) is
monotone. In such a case, Algorithm 4.3 is not longer guaranteed to converge; in-
stead, the outer loop has to be complicated. To avoid this complication, here we con-
sider a different approach, based on an equivalent reformulation of (4.26)–(4.27). To
this end, observe first that the price complementarity condition in (4.27) is equiva-
lent to

λ ∈ argmin
λ ′ ≥0

{
−λ

′T g(x)
}

Then, consider the NEP with Q + 1 players in which the “new” (Q + 1)-th player
controls the price variables λ :

minimize
xi

fi(xi,x−i)+ λ T g(x)

subject to xi ∈ Qi

minimize
λ≥0

−λ T g(x).

∀i = 1, . . . ,Q, (4.32)

The difference between the problem (4.26)–(4.27) and the NEP (4.32) is that in
the latter game there are no side constraints, but the complementarity condition
is treated as an additional player of the game (at the same level of the other Q
players), who solves a nonnegatively constrained linear program in the variable λ
parametrized by x. It is not difficult to see that this new extended game has the same
solution set of the problem (4.26)–(4.27) (note that g(x)≤ 0 in (4.32) is implicitly
satisfied at the equilibrium). Therefore, one can compute a variational solution of
a GNEP with jointly convex shared constraints by finding a solution of the NEP in
(4.32). This game is equivalent to the partitioned VI(Q̃, F̃), where Q̃ , ∏Q

i=1Qi×
Rm

+ and F̃(x,λ ) is defined as

F̃(x,λ ) ,

(
(∇xi fi(x)+∇xi g(x)λ)Q

i=1

−g(x)

)
=

(
F(x)+∇xg(x)λ

−g(x)

)
. (4.33)

Proposition 4.4. If F(x) = (∇xi fi(x))Q
i=1 is monotone on ∏Q

i=1Qi, then also F̃(x,λ )

is monotone on Q̃.

It follows from Proposition 4.4 that, under Assumptions 4.2 and 4.3, one can
compute a variational equilibrium of the GNEP by applying Algorithm 4.2 de-
scribed in Sec. 4.2.4.2 to the VI(Q̃, F̃), where

S̃τ(y(n)) , SOL
(
Q̃, F̃+ τ (I− y(n))

)

in step 2 of the algorithm is the unique solution of the regularized
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VI
(
Q̃, F̃+ τ (I−y(n))

)
,

given y(n) , (x(n),λ (n)). This is formalized in the following.

Theorem 4.6 ([38]). Suppose that the GNEP with shared constraints G =<Q, f >
satisfies Assumptions 4.2 and 4.3, and some CQ holds at all the elements in the set
Q defined in (4.21). Let {εn} ⊂ [0,∞) be a sequence such that ∑∞

n=1 εn <∞, and
let ρn be such that {ρn} ⊂ [Rm,RM], with 0 < Rm ≤ RM < 2. Then, the sequence

{(x(n),λ (n))}∞n=0 generated by the PDA described in Algorithm 4.2 and applied to
the VI(Q̃, F̃) converges to a variational solution of the GNEP.

The last thing left to discuss is how to compute, for any given y(n) , (x(n),λ (n)),
a(n approximated) solution S̃τ (y(n)) of the regularized VI

(
Q̃, F̃+ τ (I−y(n))

)
. Un-

der Assumptions 4.2 and 4.3, the VI
(
Q̃, F̃+τ (I−y(n))

)
is equivalent to the follow-

ing regularized NEP:

minimize
xi

fi(xi,x−i)+ λ T g(x)+ τ
2

∥∥∥xi−x(n)
i

∥∥∥
2

subject to xi ∈ Qi,

minimize
λ≥0

−λ T g(x)+ τ
2

∥∥∥λ −λ (n)
∥∥∥

2

∀i = 1, . . . ,Q (4.34)

whose Nash equilibria can be distributively computed by using the asynchronous
best-response algorithms described in Algorithm 4.1. The global convergence of
such a class of algorithms is guaranteed for sufficiently large τ > 0, as stated in
the following corollary, restricted to the case of separable g(x) = ∑Q

i=1 gi(xi) (the

more general case of nonseparable g is addressed in [38]), where F = (∇xi fi)
Q
i=1,

the matrix ϒ̄ F,τ is defined as

ϒ̄ F,τ ,

[
ϒ F + τI −γ
−γT τ

]
(4.35)

with ϒ F defined in (4.10), γ , (γ i)
Q
i=1 and γ i , supzi∈Qi

‖∇xigi(zi)‖2.

Corollary 4.2 ([38]). In the setting of Theorem 4.6, if g(x) = ∑Q
i=1 gi(xi) and τ is

chosen sufficiently large so that ϒ̄ F,τ is a P-matrix, then any asynchronous best-
response algorithm (see Algorithm 4.1) applied to the game in (4.34) converges to
S̃τ(y(n)).

Remark 4.8 (Partial regularization schemes). In some situations, the optimization
problems of some players might be “convex enough” to require no regularization.
The study of the convergence properties of distributed schemes based on “partial
regularizations” is addressed in [38].
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4.4 Design of Cognitive Radio Systems Based on Game Theory

In the last decade, CR has received considerable attention as a way to improve the
efficiency of radio networks [21, 15]. CR networks adopt a hierarchical access struc-
ture where the primary users (PUs) are the legacy spectrum holders while the sec-
ondary users (SUs) are the unlicensed users who sense the electromagnetic envi-
ronment and adapt their transceivers’ parameters as well as the resource allocation
decisions in order to dynamically access temporally unoccupied spectrum regions.

We consider a hierarchical CR network composed of P PUs and Q SUs, each
formed by a transmitter-receiver pair, coexisting in the same area and sharing
the same band. We focus on (block) transmissions over single-input single-output
(SISO) frequency-selective channels; more general results valid for multi-input
multi-output (MIMO) channels can be found in [31, 35]. Because of the lack of
coordination among the CR users and the competitive nature of the system, the set
of SUs can be naturally modeled as a frequency-selective N-parallel Gaussian inter-
ference channel, where N is the number of available subcarriers. The transmission
strategy of each SU i is then the power allocation vector pi = (pi(k))N

k=1 over the N
subcarriers, subject to the transmit power constraints ∑N

k=1 pi(k) ≤ Pi. Under mild
conditions (see, e.g., [26]), the maximum information rate on link i for a specific
power allocation profile p1, . . . ,pQ is

ri(pq,p−q) =
N

∑
k=1

log

(
1+

|Hii(k)|2 pi(k)

σ 2
i (k)+ ∑ j 6=i |Hi j(k)|2 p j(k)

)
, (4.36)

where σ 2
i (k) is the thermal noise power over carrier k, Hi j(k) is the channel transfer

function between the secondary transmitter j and the receiver i, and p−i , (p j) j 6=i
is the set of all the users power allocation vectors, except the ith one.

Temperature-interference constraints: In a manner different from traditional
static or centralized spectrum assignment, opportunistic communications in CR sys-
tems enable SUs to transmit with overlapping spectra with PUs, provided that the
degradation induced on the PU’s performance is null or tolerable [15]. In this chap-
ter, we envisage the use of two classes of interference constraints termed individual
conservative and global flexible constraints. For each i = 1, . . . ,Q,

Individual per-carrier interference constraints,

pi(k)≤ pmax
i (k) , min

p=1,...,P

Ipeak
p,i (k)

|H(P,S)
pi (k)|2

, ∀k = 1, · · · ,N; (4.37)

Individual overall bandwidth interference constraints,
N

∑
k=1

|H(P,S)
pi (k)|2 pi(k)≤ Itot

p,i ∀p = 1, . . . ,P; (4.38)

Global per-carrier interference constraints,
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Q

∑
i=1

|H(P,S)
pi (k)|2 pi(k)≤ Ipeak

p (k), ∀k = 1, · · · ,N, ∀p = 1, . . . ,P; (4.39)

Global overall bandwidth interference constraints,
Q

∑
i=1

N

∑
k=1

|H(P,S)
pi (k)|2 pi(k)≤ Itot

p p = 1, . . . ,P (4.40)

where H(P,S)
pi (k) is the channel transfer function between the secondary transmitter

i and the primary receiver p over carrier k; Ipeak
p,i (k) (Itot

p (k)) and Itot
p,i (Itot

p ) are the
maximum interferences allowed to be generated by the SU i (all the SUs) that is tol-
erable at the primary receiver p over carrier k and over the whole spectrum (licensed
to the PU p), respectively. The values of the Ipeak

p,i (k) and Itot
p,i can be obtained at the

SUs’ transmitters if the type of PUs are known. Methods to obtain the interference
limits when the SUs do not have this knowledge are discussed in [15]. To avoid
a trivial solution, we assume that, for all k = 1, . . . ,N and i = 1, . . . ,Q, and some
p = 1, . . . ,P,

i) pmax
i (k) < min





Ipeak
p,i (k)

|H(P,S)
pi (k)|2

, Pi





ii) ∑N
k=1 pmax

i (k) > Pi, or ∑N
k=1 |H

(P,S)
pi (k)|2 pmax

i (k) > Itot
p,i.

(4.41)

Individual interference constraints are motivated by all CR scenarios where pri-
mary terminals are oblivious to the presence of SUs (also called common model
[14, 15]). These constraints lead to totally distributed algorithms with no signaling
among the SUs, as we will show later on. However, sometimes they may be too
restrictive and thus marginalize the potential gains offered by the dynamic resource
assignment mechanism. The global interference constraints limit instead the aggre-
gate interference, which is indeed the interference experimented by the PUs. These
constraints will be shown to lead to better performance of SUs than those achiev-
able by imposing individual constraints. However, this gain comes at a price: The
resulting algorithms require some signaling between the PUs and SUs. Thus, they
can be employed in CR networks where an interaction between the PUs and the SUs
is allowed, as, e.g., in the so-called property-right CR model (or spectrum leasing)
[14].

Game Theoretical formulation under individual interference constraints. Let
us define the strategy set of each SU i as

Pi ,

{
pi ∈ RN

+ : 1T pi ≤ Pi,
N

∑
k=1

|H(P,S)
pi (k)|2 pi(k)≤ Itot

p,i ∀p, pi ≤ pmax
i

}
(4.42)

and consider the NEP Gind =< ∏iPi, (ri)
Q
i=1 >, where each SU i, given the strategy

profile p−i of the other users, aims at maximizing his information rate ri(p) in (4.36)
under local power and interference constraints in Pi: for all i = 1, . . . ,Q,
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maximize
pi

ri(pi,p−i)

subject to pi ∈ Pi.
(4.43)

First of all, observe that for any fixed p−i ≥ 0, the single-user optimization prob-
lem in (4.43) admits a unique solution (indeed, the feasible set is convex and com-
pact and ri(pi,p−i) is strictly concave in pi ∈ Pi]), given by the (multilevel) water-
filling expression [38]:

p⋆
i (k) =


 1

µ i + ∑P
p=1 λ ip|H(P,S)

pi (k)|2
−

σ 2
i (k)+ ∑ j 6=i |Hi j(k)|2 p j(k)

|Hii(k)|2




pmax
i (k)

0

(4.44)

with k = 1, . . . ,N, where [x]ba , min(max(a,x),b) for a ≤ b and the water lev-
els µ i and {λ ip} are chosen to satisfy the following complementarity constraints:

0 ≤ µ i ⊥ Pi−∑N
k=1 p⋆

i (k) ≥ 0 and 0 ≤ λ ip ⊥ Itot
pi −∑N

k=1 |H
(P,S)
pi (k)|2 p⋆

i (k) ≥ 0, for
all p = 1, . . . ,P; see [38] for efficient algorithms to compute these water levels. The
Nash equilibria p⋆ of the NEP Gind are thus the fixed-points of the waterfilling map-
ping (4.44). The study of such a game can be carried out using the VI framework
developed in Sec. 4.2. Before stating the main results, we introduce the following
definitions. For the NEP Gind, matrix ϒ F in (4.10) becomes

[ϒ ind]i j ,






min
k=1,...,N

(
|Hii(k)|2

σ2
i (k)+ ∑N

j=1 |Hi j(k)|2 pmax
j (k)

)2

, if i = j,

− max
k=1,...,N

|Hi j(k)|2

σ2
i (k)

|Hii(k)|2

σ2
i (k)

, otherwise.

(4.45)

We also introduce the per-tone ϒ ind(k), defined for each k = 1, . . . ,N, as

[ϒ ind(k)]i j ,






(
|Hii(k)|2

σ2
i (k)+ ∑N

j=1 |Hi j(k)|2 pmax
j (k)

)2

, if i = j,

−
|Hi j(k)|2

σ2
i (k)

|Hii(k)|2

σ 2
i (k)

, otherwise,

(4.46)

Note that ϒ ind ≤ ϒ ind(k) for all k. Building on Theorem 4.1 and Theorem 4.2 we
obtain the following results for the game Gind.

Theorem 4.7. Given the NEP Gind =< ∏iPi, (ri)
Q
i=1 >, suppose without loss of gen-

erality that condition i) and (the first of) ii) in (4.41) are satisfied. Then the following
hold:

(a) The NEP has a nonempty and bounded solution set;
(b) Suppose that ϒ ind in (4.45) is a P-matrix. Then the NEP has a unique NE and

any sequence {p(n)}∞n=0 generated by the asynchronous algorithm described in
Algorithm 4.1 and based on the waterfilling best-response (4.44) converges to
this equilibrium for any given feasible updating schedule of the players.
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Remark 4.9 (On the uniqueness/convergence conditions). Theorem 4.7 provides a
physical interpretation of the conditions guaranteeing the uniqueness of the NE
(and convergence of the asynchronous iterative waterfilling algorithm (IWFA)): the
uniqueness of the NE is ensured if the interference among the SUs is sufficiently
small. Sufficient conditions for ϒ ind being a P-matrix easier to be checked can be
readily obtained applying Corollary 4.3 to ϒ ind; we leave this task to the reader.

If the channels and the power/interference constraints in the game Gind are such
that matrix ϒ ind is not a P-matrix, we can still guarantee convergence of distributed
algorithms to a NE of the game at the cost of some additional computational com-
plexity. In fact, instead of the waterfilling best-response algorithm described in Al-
gorithm 4.1, we can use the proximal algorithm described in Algorithm 4.2. Ac-
cording to Theorem 4.3, the monotonicity of F(p) = (−∇pi ri(pi, p−i))

Q
i=1 on ∏iPi

is enough to guarantee the global convergence of this algorithm.

Theorem 4.8. Given the NEP Gind =< ∏iPi, (ri)
Q
i=1 >, suppose that the mapping

F(p)= (−∇pi ri(pi, p−i))
Q
i=1 is monotone on ∏iPi. Let {εn}⊂ [0,∞) be a sequence

such that ∑∞
n=1 εn <∞, let ρn be such that {ρn} ⊂ [Rm,RM] with 0 < Rm ≤ RM <

2, let τ be sufficiently large so that ϒ ind + τI is a P matrix, and let Sτ (p(n)) in
step 2 be computed using the asynchronous best-response algorithm described in
Algorithm 4.1. Then, the sequence {p(n)}∞n=0 generated by Algorithm 4.2 applied to
Gind converges to a NE of Gind.

A sufficient condition for F(p) being a monotone mapping on ∏iPi is that
ϒ ind(k) ≻ 0 for all k = 1, . . . ,N (cf. Proposition 4.2).

Numerical results. In Fig. 4.1, we compare the convergence properties of the fol-
lowing algorithms: i) The simultaneous (multilevel) IWFA (best-response algo-
rithm) described in Algorithm 4.2 and based on the mapping in (4.44); ii) the si-
multaneous proximal-response algorithm applied to game Gind, according to which
the players solve their regularized optimization problems simultaneously, while
changing the “center” of their regularization at each iteration; iii) the simultane-
ous version of the proximal decomposition algorithm described in Algorithm 4.2
and applied to game Gind; and iv) the iterative Tikhonov algorithm applied to the
VI(∏iPi, (−∇pi ri)

Q
i=1) associated to Gind and proposed in [39] (see also [19, Ch.

15.2]). We refer to these algorithms as simultaneous iterative waterfilling algorithm
(SIWFA), Jacobi proximal-response algorithm (JPRA), Jacobi proximal decompo-
sition algorithm (JPDA), and iterative distributed Tikhonov algorithm (IDTA), re-
spectively. Note that JPRA and JPDA differ only in the rule used to update the center
of the regularization: in the former, the players change the center at each iteration,
whereas in the latter the center is kept fixed for a certain number of iterations (until
the condition in step 2 of the algorithm is satisfied).

We consider a hierarchical CR network where there are two PUs (the base sta-
tions of two cells) and ten SUs, randomly distributed in the cell. The (cross)channels
among the secondary links and between the primary and the secondary links are
simulated as FIR filter of order L = 10, where each tap has variance equal to 1/L2;
the available bandwidth is divided in N = 64 subchannels. We focus on two sce-
narios, namely low/medium interference scenario and high interference scenario.
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Low/medium interference means that secondary links are far enough from each
other so that matrix ϒ ind defined in (4.45) is a P-matrix; whereas in the high
interference scenario, matrices ϒ ind(k) are positive definite, but ϒ ind is not a P-
matrix. In Fig. 4.1(a) we plotted the average rate evolution of the SUs as a func-
tion of the iteration index in the low/medium interference case, corresponding to
snri , Pi/(σ2

i d2
ii) = 5 dB and inri j , Pj/(d2

i jσ2
i ) = 0 dB for all i and j 6= i; whereas

in Fig. 4.1(b) we compared the SIWFA with the JPDA in an high interference sce-
nario, corresponding to snri , Pi/(σ 2

i d2
ii) = 0dB and inri j , Pj/(d2

i jσ 2
i ) = 5dB for

all i and j 6= i. To make the picture not excessively overcrowded, we plot only the
curves of two out of the ten links. We examined the performance of the above al-
gorithms under the following set-up (guaranteeing the fastest convergence speed of
each algorithm for the given scenario). In JPRA, we chose τ = 1; in JPDA we set
τ = 0.2 and the error sequence defining the inner termination criterion has been
chosen as εn = ε0

−n with ε0 = 1e−2, where n is the outer iteration index; in IDTA
we chose the variable step-size sequences γn = n−0.4 and δ n = n−0.49 so that (suffi-
cient) conditions for the convergence of IDTA given in [19, Prop. 15.1] are satisfied
(we use the same notation as in [39]; see therein for the details).

From Fig. 4.1(a) we infer that in the low/medium interference regime, the SI-
WFA, the JPRA and the JPDA converge quite fast (less than 10 iterations) and ex-
hibit almost the same convergence speed. The IDTA instead requires many more
iterations (about 1500 iterations) to converge, which makes it impractical. The same
convergence properties as in Fig. 4.1(a) has been experienced for all the channel
realizations we simulated. Figure 4.1(b) shows an example where the SIWFA does
not converge because of the high interference among the SUs, whereas the proposed
JPDA still converges in a few iterations. Interestingly, we experienced convergence
of our JPDA even when the matrices ϒ ind(k) are not positive semidefinite, provided
that the error sequence {εn} are properly chosen.

Game theoretical formulation under individual/global interference constraints
We focus now on the power control problem among the SUs in the presence of both
individual and global interference constraints. Because of the global constraints, the
game theoretical formulation of this problem leads to a GNEP with shared con-
straints (cf. Sec. 4.3), whose shared constrained set is given by

P̂ , P ∩






p :
Q

∑
i=1

N

∑
k=1

|H(P,S)
pi (k)|2 pi(k)≤ Itot

p ∀ p = 1, . . . ,P

Q

∑
i=1
|H(P,S)

pi (k)|2 pi(k)≤ Ipeak
p (k) ∀ p = 1, . . . ,P, k = 1, . . . ,N






(4.47)
where P , ∏iPi and Pi is defined in (4.42).

Aiming at finding distributed algorithms, we focus our interest on the variational
solutions of the GNEP, which, according to Lemma 4.4, correspond to the solutions
of the following NEP with pricing:
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Fig. 4.1 Comparison of distributed algorithms solving the game Gind in (4.43): Rates of the SUs
versus the iteration index of two out ten users, achieved by the Simultaneous Iterative Waterfilling
Algorithm (SIWFA), the Jacobi Proximal-response Algorithm (JPRA), the Jacobi Proximal De-
composition Algorithm (JPDA), and the Iterative Distributed Tikhonov Algorithm (IDTA) in the
low/medium interference regime [subplot (a)] and high interference regime [subplot (b)].

maximize
pi

ri(pi,p−i)−
P

∑
p=1

N

∑
k=1

λ peak
p,k |H

(P,S)
pi (k)|2 pi(k)

−
P

∑
p=1

λ p,tot

N

∑
k=1

|H(P,S)
pi (k)|2 pi(k)

subject to pi ∈ Pi (4.48)

for all i = 1, · · · ,Q, where ri(pi,p−i) is defined in (4.36), and the prices

λ , (λ tot;λ peak), with λ tot , (λ p,tot)
P
p=1 and λ peak , ((λ peak

p,k )P
p=1)

N
k=1

106 G. Scutari et al.

     irmgn.ir



are chosen such that the following complementary conditions are satisfied:

0≤ λ ⊥ Ψ (p)≥ 0 ⇔ minimize
λ≥0

λ TΨ (p) (4.49)

where

Ψ(p) ,




(
Itot

p −
Q

∑
i=1

N

∑
k=1

|H(P,S)
pi (k)|2 pi(k)

)P

p=1

(

Ipeak
p (k)−

Q

∑
i=1

|H(P,S)
pi (k)|2 pi(k)

)N

k=1




P

p=1




(4.50)

With a slight abuse of terminology, we will refer in the following to the NEP
(4.48) with the complementarity constraints (4.49) as game Gglob.

To study the above game we need the following intermediate definitions, based

on results in Sec. 4.3.2. Given the column vector h , (||∑P
p=1 H(P,S)

pi ||2)
Q
i=1 with

H(P,S)
pi , (|H(P,S)

pi (k)|2)N
k=1, the matrix ϒ τ in (4.35) associated to the problem (4.48)-

(4.49) becomes

ϒ ind,τ ,

[
ϒ ind + τ I −h

−hT τ

]
(4.51)

where ϒ ind is defined in (4.45). Among the several distributed schemes proposed
in the first part of the chapter to compute the solutions of Gglob, here we focus on
the following, leaving to the reader the task of specializing the other proposed algo-
rithms to game Gglob: i) projection algorithm with variable steps (PAVS), described
in Algorithm 4.3; and ii) proximal decomposition algorithm (PDA) described in Al-
gorithm 4.2. Step 2 of Algorithm 4.3—the computation of the NE of the game in
(4.48) for λ = λ (n)—and the Step 2 of Algorithm 4.2—the computation of the NE
Sτ((p(n),λ (n))) of the game obtained by the proximal regularization of (4.48)–(4.49)
(see (4.34))—can be efficiently computed using the asynchronous best-response
algorithm described in Algorithm 4.1, whose best-response for both games has a
closed form (multilevel waterfilling) expression [38]. Building on Theorems 4.4,
4.5, and 4.6, we obtain the following results for the problem Gglob.

Theorem 4.9. Given the problem Gglob, suppose w.l.o.g. that conditions (4.41) are

satisfied; let F(p) , (−∇piri(pi, p−i))
Q
i=1. Then, the following statements hold.

(a) Gglob has a nonempty and bounded solution set;
(b) Suppose that ϒ ind ≻ 0. Then: i) the power vector p⋆ at every solution of Gglob

is unique; and ii) any sequence {λ (n), p⋆(λ (n))}∞n=0 generated by the PAVS con-
verges to a solution of Gglob, provided that the scalars τn are chosen so that

0 < infn τn ≤ supn τn < 2λ least(ϒ ind)/‖h‖2
2;

(c) Suppose that the mapping F(p) is monotone on P̂ . Let {εn} ⊂ [0,∞) be a
sequence such that ∑∞

n=1 εn <∞, let ρn be such that {ρn} ⊂ [Rm,RM ] with 0 <

4 Monotone Games for Cognitive Radio Systems 107
     irmgn.ir



Rm ≤ RM < 2, and let τ be sufficiently large so that ϒ ind,τ defined in (4.51) is a

P-matrix. Then, the sequence {p(n),λ (n)}∞n=0 generated by the PDA converges to
a solution of Gglob.
A sufficient condition for F(p) being a monotone mapping on P̂ is that ϒ ind(k)≻
0 for all k = 1, . . . ,N (cf. Proposition 4.2).

Remark 4.10 (Implementation of the algorithms). In the PAVS and PDA, there are
two levels of updates: 1) the computation of the optimal power allocations of the
SUs, given the prices λ ; and 2) the updates of the price vector, given the interference
generated by the SUs over the N subcarriers. The former can be performed directly
by the SUs via the asynchronous best-response algorithm described in Algorithm

4.1. Note that, once ∑P
p=1(λ

peak
p,k +λ p,tot)|H(P,S)

pi (k)|2 are given, these algorithms are
totally distributed, since the SUs only need to measure the received multiuser inter-
ference (MUI) over the N subcarriers [26]. The update of the price vector can be
performed either by the PUs or by the SUs themselves, depending on the debate po-
sition assumed for the CR network (the property-right model or the common model
[14]). More specifically, in a property-right model, an interaction between the PUs
and the SUs is allowed. It is thus natural that the update of the prices is performed
by the PUs. Note that the signaling from the SUs to the PUs is implicit, since the
PUs to update the prices only need to locally measure the global received interfer-
ence (the function Ψ (p)). The signaling from the PUs to the SUs users, however,
is explicit: the PUs have to broadcast the prices and the SUs receive and estimate
their values. In a CR network based on the common model, the PUs are oblivious to
the presence of the SUs and thus the update of prices needs to be performed by the
SUs. Building on consensus algorithms [23, 30], at the price of additional signaling
among the SUs and computational complexity, the proposed algorithms still can be
implemented in a distributed fashion by the SUs. Details can be found in [26].

Numerical results. In Fig. 4.2 we compare the convergence properties of the follow-
ing algorithms applied to the game Gglob: i) PAVS, ii) PDA, and iii) the algorithm
proposed in [16]; we refer to these algorithms as gradient projection IWFA (GP-
IWFA), full proximal IWFA (FP-IWFA) and price-based IWFA (PB-IWFA), respec-
tively. The setup is the same as the one considered in Fig. 4.1 for the low/medium
interference regime. In addition to the individual constraints, now the PUs impose
global per-carrier interference constraints, assumed for the sake of simplicity equal
over all the subcarriers. For the scenario considered in the picture, one can see that
the convergence of both GP-IWFA and FP-IWFA is reasonably fast (less than 30
iterations), whereas the PB-IWFA requires many more iterations (more than 500).

Thanks to less stringent constraints on the transmission powers of the SUs, the
performance of the SUs achievable under global interference constraints (game
Gglob) are expected to be much better than those achievable under the more conser-
vative individual interference constraints (game Gind). Figure 4.3 confirms this intu-
ition, where we plot the sum-rate of the SUs (averaged over 500 random i.i.d. Gaus-
sian channel realizations) achievable in the two aforementioned cases as a function
of the maximum tolerable interference at the PUs, within the same set-up of Fig.
4.1.
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Fig. 4.2 Comparison of distributed algorithms solving the problem Gglob in (4.48)–(4.49): Rates
of the SUs versus the iteration index of two out ten users, achieved by the price-based IWFA (PB-
IWFA) [16], the gradient projection IWFA (GP-IWFA) and the full proximal IWFA (FP-IWFA) in
the low/medium interference regime.
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Fig. 4.3 Average sum-rate versus the (peak) interference constraint achievable under no interfer-
ence, local and global interference constraints.
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Concluding Remarks

The first part of this chapter was devoted to providing the (basic) theoretical tools
and methods based on VIs to analyze some fundamental issues of NEPs and GNEPs
with jointly shared convex constraints, such as the existence and uniqueness of a
solution, and the design of iterative distributed algorithms along with their con-
vergence properties. The second part of the chapter made these theoretical results
practical by showing how the proposed framework can be successfully applied to
solving some challenging equilibrium problems in CR networks.
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Chapter 5
A Mechanism Design Approach to Dynamic
Price-Based Control of Multi-Agent Systems

Cédric Langbort

Abstract We show how ideas and tools from the field of mechanism design in eco-
nomics can be brought to bear on the problem of price-based control of dynamical
systems. Specifically, we take inspiration from the Vickrey–Clarkes–Groves mech-
anism to design strategy-proof dynamic price-functions, which can induce subsys-
tems to apply socially efficient control inputs even though they are self-interested
and possibly strategically misreport their cost and dynamics’ models to the control
designer.

5.1 Introduction

Price-based control uses incentives, instead of instructions or direct actions, to in-
duce the self-interested parties involved in a system to make socially desirable deci-
sions. When these decisions affect a dynamical system (as is the case, e.g., when
each party is a provider controlling a power plant) or when the environment is
time-varying (e.g., when agents can join and leave at any time) and prices are up-
dated dynamically as the system evolves, this control process is usually referred to
as real-time pricing or dynamic price-based control. Examples of infrastructures
already partially controlled through incentives include power grids, where prices
are used to regulate both production and demand, and communication networks,
in which prices are used, e.g., to induce collaboration in peer-to-peer networks or
guard against congestion (see [14, 17] and references therein). More recently the use
of prices has also been suggested to help incorporate airline preferences in weather-
induced rescheduling operations in air traffic flow control [19] and for the coordi-
nation of windmills in large-scale wind farms [15], although such schemes have not
been implemented yet.

Department of Aerospace Engineering & Coordinated Science Laboratory
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One of the main obstacles precluding the generalized deployment of dynamic
price-based control to these infrastructures in general, and future generations of
power networks in particular, is the relative lack of theoretical foundations to guar-
antee these systems’ performance when used in a realistic and uncertain environ-
ment. In particular, most existing schemes can only be proved to achieve their reg-
ulation goal under the very restrictive assumptions of compliance and truthfulness
of the self-interested parties. To reap the expected benefits of real-time pricing in
practice, it is thus essential to construct pricing schemes that are strategy-proof,
i.e., induce the socially desired behavior, even when agents purposefully misreport
information to the designer so as to induce individually advantageous prices.

In this chapter, we show how the ideas and tools of mechanism design the-
ory in economics can be leveraged to construct such provably strategy-proof dy-
namic price-based control methods. We start with the example of integrated power
networks as a way to motivate the need for price-based control and strategy-
proofness in Sec. 5.2. We then present an existing technique and demonstrate its lack
of strategy-proofness in Sec. 5.3.1, before reviewing the Vickrey–Clarke–Groves
(VCG) scheme in Sec. 5.3.2.1. Finally, in Sec. 5.4, we exploit the insight provided
by VCG to construct satisfactory dynamic price functions for the power network
example. We end with some considerations about the remaining shortcomings of
this approach and directions for future work.

5.2 Motivation—Price-Based Control in Integrated Networks

Integrated power networks, such as the ones currently in operation in New York
State, New England and New Zealand, are typically regulated through the resource
allocation process pictured in Fig. 5.1 [20, 5]. Each provider has a cost function
parametrized by the characteristics of and operational constraints on its generators.
It transmits these characteristics to the utility or electric control center, which com-
putes the desired power to be generated accounting for global constraints (such as
Kirchhoff’s laws, cross-area frequency coupling, transmission line overload, etc.)
and forecast demand. The utility publishes prices, which serve as indirect control
signals and to which providers respond by generating the power level that mini-
mizes their net individual cost (“cost-plus-payment”). This is in contrast with so-
called “unbundled power markets,” in which prices are determined by a market with
no central authority [20].

In most cases, this resource allocation process is carried out over horizons of
different duration, incorporating different information for each time scale, and re-
peated up to several times an hour. Day-ahead pricing, which computes a single en-
ergy price for the next 24 hours based on the demand forecasts and providers’ cost
function over the same period, is present in most systems. In addition, some utilities
(e.g., in Florida [3]) also use spot pricing schemes, in which prices are computed for
much shorter horizons and in which the global constraints and providers’ character-
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5 Dynamic Price-Based Control of Multi-Agent Systems 115

Fig. 5.1 Price-based control in an integrated power network. Note that power plants have a priori
no reason to report their model information truthfully to the designer.

istics are updated before computations for a new horizon start. In this computation,
it is typically assumed that the generators are in quasi-steady state.

In contrast, in real-time pricing (also known as dynamic price-based control
[3, 16, 11]), prices are computed and published at the fastest time scale present
in the system to be controlled, without assuming that the system is in equilibrium.
A specific regulation problem, where dynamic price-based control has been applied
[3, 7] is multi-area load frequency control, as discussed next.

5.2.1 Multi-Area Load Frequency Control

Consider two spatial areas, indexed by i = 1,2, both equipped with a privately owned
generator (several generators per area can also be considered but require more cum-
bersome notation). In the neighborhood of a fixed set point, each generator’s dy-
namics can be captured by the following linear time-invariant system:

xi(k +1) = Aixi(k)+ Biui(k) (5.1)

Mi(k) = Cixi(k), xi(0) given, (5.2)

where xi is the state of the boiler-turbine generator, ui is the (scalar) governor control
valve position and Mi is the mechanical power to the turbine-generator shaft of the
generator in area i. The deviation of area i’s current frequency from its set point
value of 50 or 60 Hz (depending on which part of the world the regulation problem
is set up), denoted by fi, satisfies

fi(k +1) = fi(k)+
∆kMi(k)−Ei(k)

Hi
, (5.3)
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where Ei(k) is the total energy produced in area i during the time step ∆k and Hi is
the inertial constant of area i’s generator. Areas are coupled through a tie line and
energy Ei can be expressed as

Ei(k) = Di(k)+
δ i(k)− δ−i(k)

X
, (5.4)

where the power demand profile in area i over the time window T of interest,
{Di(k)}T

k=0, is assumed to be known to the generator and central planning utility,
and X is the inductance of the tie line. The term (δ i−δ −i) in (5.4) is the difference
between voltage phase angle of area i and the voltage phase angle of the other area.
In particular, we have introduced the notation−i to represent {1,2}\{i}. Finally, if
we make the typical assumption that the mechanical angle of the generator’s rotor
is equal to the phase angle of the voltage in the corresponding area, we can write

δ i(k +1) = δ i(k)+ ∆k fi(k). (5.5)

Equations (5.1–5.5) constitute the so called (discrete time) average system fre-
quency model, which is often used for load frequency control problems in the power
systems literature (see, e.g., [16]). We note that, although generator i’s dynamics
(5.1) are typically assumed to be linear time-invariant in such models, most of the
results presented next can be derived for nonlinear dynamics as well. This set of
equations is captured by the “physical block” subsystem in the block diagram of
Fig. 5.2.

5.2.2 Dynamic Price-Based Control

Over a horizon of T time steps, power plant i has a production cost

Ji

(
{ui(k)}T −1

k=0

)
:=

T−1

∑
k=0

ℓi(xi(k),ui(k))+Φi(xi(T )), (5.6)

where state xi and input ui are related through dynamics (5.1). To simplify further
developments, we assume that Ji is a convex function but is otherwise arbitrary.
In load frequency control, the goal of the central utility is to keep the frequency
deviations f1 and f2 in both areas small, and the voltage phase difference |δ 1−
δ 2|, which determines the power flow between areas, set to a desired value, while
minimizing the global production cost. Introducing functions ℓ f and ℓδ to gauge
the amplitude of frequency and phase difference deviations, respectively, amounts
to minimizing
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Fig. 5.2 Power network with dynamic price-based control. The “decision making” systems repre-
sent the generators’ model of rational behavior, i.e., the way in which they react to prices.

J
(
{u1(k)}T−1

k=0 ,{u2(k)}T−1
k=0

)
:= J1

(
{u1(k)}T−1

k=0

)
+ J2

(
{u2(k)}T−1

k=0

)

+
T−1

∑
k=0

(
ℓ f ( f1(k), f2(k))+ ℓδ (δ 1(k)− δ 2(k)))

+Φ f ( f1(T ), f2(T ))+ Φδ (δ 1(T )−δ2(T ))
)

︸ ︷︷ ︸
G({u1(k)}T−1

k=0 ,{u2(k)}T−1
k=0 )

(5.7)

subject to dynamics (5.1-5.5).
In an integrated network, the minimization of cost (5.7) cannot be performed di-

rectly by the utility because (i) the optimization does not have access to individual
costs J1 and J2 and, (ii) even if it could compute the optimal inputs u⋆

1 and u⋆
2 min-

imizing (5.7), the algorithm would not have the authority to set inputs u1 and u2

to these values, since the governor valve position is controlled by the generator’s
operator. Instead, the utility can offer the generators an incentive to try to induce
them to choose u⋆

1 and u⋆
2 as their inputs. This, in essence, is the central conceptual

idea underlying price-based control. An incentive for generator i is a price func-
tion π i, which, to every decision {u1(k)}T−1

k=0 ,{u2(k)}T−1
k=0 of the generators over the

window T of interest associates a monetary payment. We assume that this payment
can take on both positive and negative values, with positive values corresponding
to payments made from the generator to the utility (a tax or fee), and negative val-
ues corresponding to payments from the utility to the generators (a reward). When
offered such a price, generator i’s net production cost becomes

Ci

(
{ui(k)}T−1

k=0

)
= Ji

(
{ui(k)}T−1

k=0

)
+π i

(
{ui(k)}T−1

k=0 ,{u−i(k)}T−1
k=0

)
(5.8)

Following [3], we assume that providers respond to a sequence of prices by mini-
mizing their net cost Ci over a compact and convex set of acceptable control inputs
Ui. This is sometimes referred to as the players being ’price-takers’ [10]. With this
model of players’ rational behavior, the main question of dynamic price-based con-
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trol is whether the utility can find incremental prices {πk
i }T−1

k=0 such that conditions
(5.9) below are satisfied:

{u⋆
i (k)}T−1

k=0 = argmin
{ui(k)}T−1

k=0 ∈Ui

Ci, (5.9)

π i =
T−1

∑
i=0

πk
i , for all k, πk

i is a function of {ui(t)}k
t=0 (5.10)

Note that there is a slight abuse of notation in (5.8) and (5.9), since cost Ci can
depend on {u−i(k)}T−1

k=0 in addition to player i’s decisions. In this case, the argmin
is to be understood as the minimization of function Ci(.,{ũ−i(k)}T−1

k=0 ) for a specific
choice {ũ−i(k)}T−1

k=0 of player −i’s decisions, to be defined shortly.
When (5.9) holds, we say that price functions {π i}2

i=1 are efficient. Equation
(5.10) imposes that a price be paid by the utility at every time step, instead of a
lump sum at the end of the time window. It is in this sense that the pricing scheme
is dynamic. Condition (5.10) ensures that prices are causal functions of the gener-
ators’ control inputs, which is necessary to guarantee that the utility can compute
the price at each step. One can thus think of a dynamic price-based control scheme
as a causal system mapping generators’ state and input signals into price signals,
such that the closed-loop system pictured in Fig. 5.2 minimizes cost function J. In
the block diagram of Fig. 5.2, such a dynamic price-based control scheme is cap-
tured by the ’price computation’ system. The decision making systems capture the
generators’ model of rational behavior, i.e., the specification of how they react to
prices.

We propose several examples of efficient price functions in the next sections. The
first one, presented in Sec. 5.3 (and similar to the original proposal of Berger and
Schweppe [2, 16]) depends only on player i’s decisions, but requires the utility to
have access to the plant’s models and cost functions. In contrast, the price functions
explored in Sec. 5.4 are efficient for all cost functions and models, but require the
notion of Nash efficiency (which corresponds to a particular choice of {u−i(k)}T−1

k=0
in (5.8)–(5.9)).

5.3 A Formal Model

Motivated by the example of integrated networks, we start by considering the class
of static optimization problems:

min J1(ξ 1)+ J2(ξ 2)+ G(ζ) (5.11a)

subject to ζ = H1(ξ 1)+ H2(ξ 2)︸ ︷︷ ︸
H(ξ 1,ξ 2)

, ξ i ∈ Ui,i = 1,2. (5.11b)
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The load frequency control problem of Sec. 5.2.1 can be captured in the form of
(5.11) with appropriate linear functions H1 and H2 if we represent the sequence
of inputs {ui(k)}T −1

k=0 by the T -dimensional vector ξ i, concatenate all variables
{δ 1(k)}T−1

k=0 , {δ2(k)}T−1
k=0 , { f1(k)}T−1

k=0 and { f2(k)}T−1
k=0 into vector ζ , and rewrite

the cost functions in terms of these variables. For convenience we also henceforth
assume that the set Ui is defined as

Ui = {ξ | gi j(ξ )≤ 0, j = 1, . . . ,mi},

for some convex functions gi1, . . . ,gimi . From this analogy, it is natural to think of
quantities (ξ i,Ji) as pertaining to a stand-alone subsystem labeled i (akin to the
power plant considered earlier), while (ζ ,G) pertains to a leader subsystem similar
to the power utility of Sec. 5.2. We can also think of functions H1 and H2 as being
known by the leader since they are the counterpart of coupling dynamics (5.4, 5.3,
5.5).

As before, we say that a price function π i of variable ξ i is efficient if

arg min
ξ∈Ui

Ji(ξ i)+ π i(ξ i) (5.12)

is a solution to problem (5.11). This price function is to be computed by the leader
while decision ξ i is ultimately made by subsystem i according to (5.7). For now,
we will not concern ourselves with the requirement that the prices be decomposable
into causal increments. We will revisit this issue in Sec. 5.4.

5.3.1 KKT Price-Based Control and Its Inadequacy

We are now in a position to review Berger and Schweppe’s original price-based
control strategy [2].

Proposition 5.1. The price function π⋆
i defined as

π⋆
i (ξ i) :=

[
∇ξ i

(G ◦H)(ξ ⋆
1,ξ

⋆
2)
]

ξ i, ∀ξ i ∈ Ui (5.13)

is efficient.

Proof. Let C⋆
i denote the cost function of power plant i defined as per (5.7) when

using the price function π⋆
i . Note that this function is convex since Ji is convex and

π⋆
i is linear. Hence, C⋆

i has a unique minimum ξ̄ i in Ui characterized by the Karush-
Kuhn-Tucker (KKT) conditions
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gi j(ξ̄ i)≤ 0, ∀ j (5.14a)

µ j ≥ 0, ∀ j (5.14b)

µT
j gi j(ξ̄ i) = 0, ∀ j (5.14c)

∇C⋆
i (ξ̄ i)+

mi

∑
j=1

µT
j∇gi j(ξ̄ i) = 0. (5.14d)

Now, note that the minimum (ξ ⋆
1,ξ

⋆
2) of problem (5.11) must satisfy the corre-

sponding set of necessary KKT conditions, which are identical to (5.14), except
for (5.14d), which is replaced by

∇J(ξ ⋆
i )+∇ξ i

[G◦H](ξ ⋆
1,ξ

⋆
2)+∑

j
µT

j∇gi j(ξ ⋆
i ) = 0.

By definition, ∇C⋆
i (ξ ) = ∇Ji(ξ ) +∇ξ i

[J ◦H](ξ ⋆
1,ξ

⋆
2). Thus, ξ ⋆

i is a solution of
(5.14) as well with the same multipliers {µ j}mi

j=1 and, in turn, the unique minimizer
of C⋆

i . ⊓⊔
Price function π⋆

i has the advantage of being linear in the decision variable ξ i.
However it also requires the price designer to compute the optimal decisions ξ ⋆

1, ξ ⋆
2,

i.e., to solve problem (5.11). This is undesirable because cost functions J1, J2 and
coupling functions H1 and H2 are typically not available to the leader a priori, and
must be elicited from the subsystems.

If we assume that these subsystems are strategic and solely interested in mini-
mizing their individual costs, with no regard to solving problem (5.11), we should
expect them to misreport information if this can result in a price that is advanta-
geous to them. This would lead the designer to compute incorrect values for ξ ⋆

1 and
ξ ⋆

2 in (5.13) and, in turn, to use an inefficient price function. Such strategic misre-
porting has been observed in practice on many occasions, particularly in the context
of power networks. For example, the sudden rise of the Midwest wholesale spot
energy prices to $7000/MWh over the course of a few minutes in June 1998, which
resulted in local shortages, was widely attributed to “ramping constraint gaming”
[12, 20, 13]—a practice in which providers colluded to lie about their generators’
instantaneous start-up and turn-off times.

In summary, the only context in which price function π⋆
i is acceptable is when the

leader has a priori knowledge of subsystems’ characteristics, or when subsystems
can be trusted to report them truthfully and act as price takers. However, if we expect
subsystems to be strategic, it is necessary we can ensure that the price function
be efficient even in the presence of incorrect information about the subsystems’
characteristics. This naturally raises the question of designing a strategy-proof price
function for problem (5.11), i.e., a price function that is efficient for all values of
functions J1 and J2.
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5.3.2 Strategy-Proofness and Mechanism Design

In order to see how strategy-proofness might be achieved, it is instructive to review
some ideas from the field of mechanism design in economics, where this problem
has been studied in a different context. To this end, consider yet another problem
formulation, which is standard for mechanism design (see, e.g., [9]).

5.3.2.1 The VCG Mechanism: A Building Block for Strategy-Proofness

A typical mechanism design problem involves M agents. Each agent i (which can be
identified with a generator in the case of load-frequency control) has a cost function
vi which depends on its type θ i ∈R and the decision d taken by the central planner.
The type θ i represents all the information that is privately known to the agent, but the
functional form of vi is assumed to be globally known. Note that this is in contrast
with problem (5.11) in Sec. 5.3, where a subsystem’s private information is the
arbitrary convex function Ji. The goal of the central planner (akin to the leader in
our case) is to compute the decision d that minimizes the social cost

M

∑
i=1

vi(θ i,d) (5.15)

of the agents, even though it does not know the types θ := (θ 1, ...,θ M). To do
this, the planner first queries the agents for their type and receives a report θ̂ =
(θ̂ 1, ..., θ̂ M) that may not be true. Based on this possibly false report, the planner
(i) computes his decision d(θ̂) and (ii) rewards each player i by paying him a price
ti(θ̂ ). Player i thus incurs a net cost of

Vi(θ i,d(θ̂ )) = vi(θ i,d(θ̂))+ ti(θ̂) (5.16)

when his true type is θ i and the report received by the planner is θ̂ . Assuming that
each player acts so as to minimize this net cost, regardless of the other players’
reports (i.e., that he plays a dominant strategy), the planner wants to find payments
{ti}M

i=1 that induce the revelation of the true types, i.e., such that

Vi(θ i,d(θ i, θ̂−i))≤Vi(θ i,d(θ̂ )),∀θ̂ (5.17a)

d(θ) minimizes (5.15), (5.17b)

where we have introduced the notation θ−i to designate the (M− 1)-tuple

(θ 1, . . . ,θ i−1, . . . ,θ i+1, . . . ,θ M) ∀i

Conditions (5.17) are the counterparts of incentive conditions (5.7), in the case
where truthfulness, instead of a known decision, is to be induced by the planner.
It can be shown [9] that when the types θ is are scalar, any set of price functions
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{ti}M
i=1 satisfying (5.17) can be written as

ti(θ̂ ) = ∑
j 6=i

v j(θ̂ j,opt(θ̂))+ fi(θ̂−i), (5.18)

where fi is an arbitrary function and opt is the map which, to a type-report θ̂ , as-
sociates the maximum of social welfare function (5.15) when θ = θ̂ . Note that this
function, and hence price function (5.18) as well, can be directly computed by the
planner, since we have assumed that the functional form of {vi}M

i=1 was known to
the planner. Among all functions satisfying (5.18), the following one, known as the
Vickrey–Clarke–Groves (VCG) scheme, is particularly interesting, because it can
be given a natural auction interpretation [18]:

tVCG
i (θ̂ ) = ∑

j 6=i

v j(θ̂ j,opt(θ̂))−min
d

∑
j 6=i

v j(θ̂ j,d). (5.19)

In particular, player i receives as a payment his marginal contribution to the optimal
global cost ∑ j v j(θ̂ j, opt(θ̂)).

5.3.2.2 Achieving Strategy-Proofness in Nash Equilibrium for Problem (5.11)

The discussion of Sec. 5.3.2.1 shows how one can design mechanisms which ensure
that it is in the subsystems’ best interest is to report truthful information. With this
background, it seems natural to try to design a strategy-proof price function for
problem (5.11) in two steps, by first constructing a VCG revelation mechanism to
induce each subsystem to report the true value of function Ji, and then using this
report to compute an efficient price function, such as {π⋆

i }. However, this forces
the leader to pay a price for both decision ξ i and a description of function Ji. It is
also not clear what form the report could take in the first step, since function Ji is
infinite-dimensional. We propose a different kind of provably strategy-proof price-
based control law, which builds on the intuition provided by the VCG mechanism
in a more indirect way but requires us to slightly modify the set-up of Sec. 5.3.
First, we allow subsystem i’s price function π i to depend on the decision of both
subsystems, instead of just ξ i. In turn, the resulting net cost function

Ci(ξ i,ξ−i) = Ji(ξ i)+ π i(ξ i,ξ −i)

also depends on the decisions of both subsystems. Second, we replace the price-
taking assumption (i.e., the assumption that subsystems respond to prices by min-
imizing Ci, as in (5.7)) by a different model of subsystem rational behavior. We
assume that subsystems act noncooperatively and make decisions ξ̄ 1 and ξ̄ 2 that
constitute a Nash equilibrium, i.e., such that

Ci(ξ̄ i, ξ̄−i) < Ci(ξ i, ξ̄ −i)∀ξ i and ∀i = 1,2. (5.20)
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Accordingly, we replace the notion of efficiency introduced in Sec. 5.3 by that of
Nash efficiency and say that price functions {π i}2

i=1 are Nash efficient if the optimal
solution of problem (5.11) satisfies the Nash equilibrium conditions (5.20). We say
they are Nash strategy-proof if they are Nash efficient for all convex functions J1,
J2.

Theorem 5.1. Price functions {π i}2
i=1 are smooth and Nash strategy-proof for prob-

lem (5.11) if and only if there exist smooth functions {Fi : U−i→R}2
i=1 such that

π i(ξ i,ξ −i) = [G◦H](ξ 1,ξ 2)+ Fi(ξ −i) (5.21)

for all i and all (ξ i,ξ−i) ∈ int Ui× int U−i.

Before providing a proof of Theorem 5.1, we should note the strong resem-
blance between characterizations (5.21) and (5.18). with the well-known Vickrey–
Clarke–Groves mechanism for welfare maximization (see, e.g., [9]). It is worth re-
emphasizing that the VCG mechanism generates prices that implement truthful-
ness in dominant strategies (i.e., such that Ci(ξ ⋆

i ,ξ −i) < Ci(ξ i,ξ −i) for all ξ i,ξ −i)
instead of being a Nash equilibrium. This dominant strategies implementation is
achieved by use of the efficient decision rule, i.e., the map that to each value of
the privately known types associates the optimal decision. In the setting of problem
(5.11), computing this map forces the leader to make use of (ξ ⋆

1,ξ
⋆
2) which, as ex-

plained earlier, does not lead to strategy-proofness. It is because of the impossibility
of using the efficient decision rule that we had to settle for Nash strategy-proofness.

Finally, note that just like for the Clarke and Groves payment, we can choose

Fi(ξ −i) =−min
ξ i∈Ui

[G◦H](ξ 1,ξ 2)

when the constraint sets U1,U2 are known to the leader. This results in prices
π i(ξ i,ξ −i) that are always nonnegative, i.e., such that subsystems always receive
money from the leader.

Proof. The method of proof is adapted from Theorem 2 in [9]. First, if π i(ξ i,ξ −i)
satisfies (5.21), then Ci(ξ i,ξ −i) = Ji(ξ i)+G(H(ξ 1,ξ 2))+F(ξ −i) for all (ξ i,ξ −i).
Hence, if there exists ξ i 6= ξ ⋆

i such that Ci(ξ i,ξ
⋆
−i)≤ Ci(ξ ⋆

i ,ξ
⋆
−i), it holds that

Ji(ξ i)+ J−i(ξ ⋆
−i)+ G(Hi(ξ i)+ H−i(ξ ⋆

−i))≤ Ji(ξ ⋆
i )+ J−i(ξ ⋆

−i)+ G(H(ξ ⋆
1,ξ

⋆
2))

and (ξ ⋆
i ,ξ

⋆
−i) cannot be the unique minimum of problem (5.23), which is a contra-

diction. As a result, (ξ ⋆
1,ξ

⋆
2) is a Nash equilibrium of the net cost functions C1, C2.

Conversely, let us assume that {π i}2
i=1 are smooth and Nash strategy-proof for

(5.11). Let (ξ̄ 1, ξ̄ 2) ∈ int U1× int U2 be such that there exist convex functions J̄1

and J̄2 for which (ξ̄ 1, ξ̄ 2) is the optimal decision in problem (5.11).

By the assumption on the price functions, (ξ̄ 1, ξ̄ 2) is a Nash equilibrium for the
game described by the agents’ net cost functions {J̄i +π i}2

i=1. Hence,
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∇J̄i(ξ̄ i)+∇ξ i
π i(ξ̄ i, ξ̄ −i) = 0,

since ξ̄ i must be a local minimizer of J̄i(.) + π i(., ξ̄ −i) over Ui and is an interior
point by assumption. At the same time, ξ̄ 1, ξ̄ 2 also minimizes the convex function
J̄1 + J̄2 +[G ◦H] over U1×U2, so it is the unique solution of the corresponding KKT
conditions, with Lagrange multipliers of all gi j equal to zero (again, because it is
an interior point). Hence, we find that

∇ξ i
π i(ξ̄ i, ξ̄ −i) =∇ξ i

[G◦H](ξ̄ 1, ξ̄ 2). (5.22)

To finish the proof, it is now enough to show that equality (5.22) holds for all
(ξ̄ 1, ξ̄ 2) ∈ int U1× int U2, i.e., that every such interior point can be written as the
optimal decision of problem (5.11) for some functions J̄1, J̄2. This latter statement
clearly holds since, for any given (ξ̄ 1, ξ̄ 2) ∈ int U1× int U2, we can define function
J̄ on U1×U2 as

J̄i(ξ ) =
1
2

ξ T ξ − (ξ̄ i +∇ξ i
[G◦H](ξ̄ 1, ξ̄ 2))

T ξ .

J̄i is convex and ξ̄ i satisfies

∇J̄i(ξ̄ i) =−∇ξ i
[G ◦H](ξ̄ 1, ξ̄ 2),

which are the KKT conditions for problem (5.11). ⊓⊔

5.4 Back to Load Frequency Control and Dynamic Prices

So far, we have seen how to build on the VCG mechanism to construct Nash
strategy-proof price functions for problem (5.11). In this section, we go back to
the motivating example of price-based load frequency control and show how to turn
these static price functions into dynamic ones. To this end, consider the following
specific linear quadratic instance of the load frequency control problem:

min
1
2

N−1

∑
t=0

( 2

∑
i=1

xi(t)
T Qixi(t)+ ui(t)

T Riui(t)+ z(t +1)T Qz(t +1)
)

(5.23a)

subject to xi(t +1) = Aixi(t)+ Biui(t), xi(0) = x̄i, ∀i, (5.23b)

z(t + 1) = z(t)+ M1x1(t)+ M2x2(t); z(0) = z̄, (5.23c)

‖ui(t)‖ ≤ 1, ∀i (5.23d)

Introducing
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xi[N] =




x̄i
...

xi(N− 1)


 , z[N] =




z(1)
...

z(N)


 ,

ui[N] =




ui(0)
...

ui(N−1)


Ai[N] =




I
...

AN
i


 ,

Bi[N] =




0 0 . . . . . . 0

Bi 0
...

AiBi Bi
...

...
. . .

. . .
...

AN−1
i Bi . . . AiBi Bi 0




,

Mi[N] =




Mi 0 . . . 0

Mi Mi 0 0
...

...
. . .

...

Mi . . . . . . Mi




and
Qi[N] = IN⊗Qi, Q[N] = IN⊗Q,

Ri[N] = IN⊗Ri, E[N] =




I
...

I


 ,

we can rewrite (5.23) as

min
1
2

(
z[N]T Q[N]z[N]+

2

∑
i=1

[
x1[N]

u1[N]

]T [
Q1[N] 0

0 R1[N]

][
x1[N]

u1[N]

])

subject to xi[N] = Ai[N]x̄i +Bi[N]ui[N],

z[N] = E[N]z̄+ M1[N]x1[N]+ M2[N]x2[N].

This is of the form (5.11), with appropriately defined functions Ji, Hi and G, and Ui

a hypercube. In particular,

H(u1[N],u2[N]) = E[N]z̄ +
2

∑
i=1

Mi(Ai[N]x̄i +Bi[N]ui[N])

and

J(z[N]) =
1
2

z[N]T Q[N]z[N].
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According to Theorem 5.1, a Nash strategy-proof price function π i for problem
(5.23) must be of the form

π i(ui[N],u−i[N]) = [G◦H](u1[N],u2[N])+Fi(u−i[N])

for some function Fi. Among such prices, we are particularly interested in those that
can be expressed as functions of Mi[N]xi[N] and M−i[N]x−i[N] since, unlike the
applied inputs ui[N] and u−i[N], these outputs are easily measured by the utility. A
possible choice of price function, then, is π̃ i defined as

π̃ i(ui[N],u−i[N]) =
(

E[N]z̄ +
1
2

Mi[N]xi[N]+M−i[N]x−i[N]
)T

Q[N]Mi[N]xi[N].

(5.24)
In order to obtain a dynamic price scheme we must, as stated in (5.9), decompose
π i as

N−1

∑
t=0

π t
i(Mi[N]xi[N],M−i[N]x−i[N]) = π̃ i(ui[N],u−i[N]) (5.25)

where functions {πt
i}2

i=1 satisfy

π t
i(Mi[N]xi[N],M−i[N]x−i[N]) = fi({Mixi(s)}t

s=0,{M−ix−i(s)}t
s=0,t)

for all 0 ≤ t ≤ N− 1 and some function fi. Among the multiple choices for such
incremental price functions, {ρt

i}2
i=1 described as follows are of particular interest:

ρ0
i (xi(0),x−i(0)) =

1
2

xi(0)T MT
i QMixi(0)+ x−i(0)T MT

−iQMixi(0)+ z̄T QMixi(0)

where

ρt+1
i =ρt+1

i ({xi(s)}t
s=0,{x−i(s)}t

s=0) = ρ t
i + z̄T QMixi(t +1) (5.26)

+
1
2

xi(t + 1)T MT
i QMixi(t + 1)+ x−i(t +1)T MT

−iQMixi(t +1)

+ ∑
s≤t

(
xi(s)T MT

i QMixi(t +1)

+ x−i(t +1)T MT
−iQMixi(s)+ x−i(s)

T MT
−iQMixi(t +1)

)

for all 0 < t ≤ N − 1. Indeed, note that the following equality holds for all t, not
necessarily equal to N−1:

t

∑
s=0

ρs
i =
(

E[t]z̄+
1
2

Mi[t]xi[t]+M−i[t]x−i[t]
)T

Q[t]Mi[t]xi[t].

This in particular means that the price functions {∑t
s=0 ρ t

i}2
i=1 are Nash strategy-

proof for problem (5.23) regardless of the horizon length N. In that sense, it can
be said that incremental prices {ρt

i}2
i=1 implement the correct decisions in subgame

perfect Nash equilibrium [8]. This is particularly useful in a situation where the
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horizon is chosen by the plants, e.g., when they must declare, before the beginning
of the planning phase, a time during which they will be connected to the network and
equations (5.23) will be valid. In contrast, when using the one-shot price functions
{π̃ i}2

i=1 (or even the incremental payments {π̃t
i} defined by

π̃t
i = π̃ t

i({xi(s)}t
s=0,{x−i(s)}t

s=0) (5.27)

= (N− t)
[1

2
xi(t)T MT

i QMixi(t)+ x−i(t)T MT
−iQMixi(t)+ z̄T QMixi(t)

+ ∑
s<t

(
xi(s)

T MT
i QMixi(t)+ x−i(t)

T MT
−iQMixi(s)+ x−i(s)

T MT
−iQMixi(t)

)]

for all 0≤ t ≤ N−1 and thus satisfy (5.25)), there is an opportunity for power plants
to misrepresent their plans by declaring a time horizon N that is different from the
true time N′ that they intend to stay connected. Prices π̃ i and π̃t

i would then be
computed with this declared value N and fail to guarantee that u⋆

1[N
′] and u⋆

2[N
′]

are chosen over the true horizon of operation, when plants play a Nash strategy over
[0,N′− 1].

5.5 Discussion of Models of Rational Behavior and Future Work

The model of rational behavior (Nash equilibrium playing over the full planning
horizon [0,N−1]) used so far has the disadvantage that decision ūi[N](s) made by
agent i at step s depends on the horizon over which it is acting strategically. As a
result, the decision made by the plants do not depend causally on the prices, even
when the utility uses incremental price functions. For example, when using {ρt

i}2
i=1,

the decision made at s by agent i depends on the full payment ∑N−1
t=0 ρt

i , not just on
the sequence {ρt

i}s
t=0.

While such a noncausal relation is acceptable for planning problems like (5.23),
where one can realistically imagine the utility announcing how prices will be com-
puted for all time and plants using this information to decide how to act in advance,
one can also think of scenarios (different from the original load frequency control
problem of [2]) where agents will not plan ahead for a predetermined horizon, but
simply react to past and present posted prices, thus making the relation between
prices and decision causal, as pictured in the block diagram of Fig. 5.3. This may
happen, for example, for smaller and inconsistent generators owned by private users,
which may connect to the grid only sporadically.

We can think of two approaches for investigating situations in which agents are
constrained to act causally with respect to published prices.

• One can use a different model of rational behavior that is compatible with causal-
ity and try to determine price functions that induce the desired outcome under
such assumptions. This is the approach taken in some recent works on dynamic
mechanism design in economics, in which mechanisms have been designed for
systems described by Markovian decision processes that implement efficient de-
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Fig. 5.3 System (5.23) controlled by incremental price functions {ρ t
i}. Note that all subsystems

are causal, in accordance with the standard practice of block diagrams. See text for details.

cisions in so called Markov perfect equilibrium [4] or can be shown to be interim
incentive compatible [1]. However, both mechanisms use incremental price func-
tions whose computation relies on the value function of optimal control problem
(5.23) and thus depend on the agents’ cost functions J1 and J2.

• One could take the price-computation block of Fig. 5.3 as given (and determined
according to an arbitrary model of rational behavior, which, although believed to
be invalid and/or incompatible with causality, leads to easily computable prices
such as {ρt

i}2
i=1) and study the robustness of/performance degradation in the

closed-loop system when the rational decision subsystems vary in a set of op-
erators, possibly under the additional constraint of causality. This, in principle,
could be done with the tools of robust control theory [6] and presents two ad-
vantages. First, this robustness analysis could also incorporate other sources of
uncertainty such as measurement errors and degradation in the channels between
subsystems and the price-computation block (or even in that block itself if, e.g.,
the utility has uncertainty on the H function). Second, it would also allow us to
study the properties of mechanisms under a departure of strict Nash-playing be-
havior. This seems like a valuable endeavor, as the question as to whether strate-
gic agents actually play a Nash equilibrium in practical noncooperative settings
is still largely open in economics.

We intend to explore this second, control theory-based, approach in our future
work, as a complement to the direction taken by dynamic mechanism design meth-
ods.
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Chapter 6
Recursive Bargaining with Dynamic
Accumulation

Francesca Flamini

Abstract We study a bargaining game (á la Rubinstein) in which parties are allowed
to invest part of an available surplus. Therefore, in addition to the standard problem
of how to divide a surplus for their own consumption, parties face the additional
problem of how much to invest, knowing that the level of investment affects the
surplus available in the next period. We provide an algorithm to solve the game
when the number of bargaining stages is finite but tends to infinity. We show that the
equilibrium investment and consumption shares become independent of the capital
stock. The convergence of the equilibrium demands is affected by the elasticity of
substitution and parties’ patience.

6.1 Introduction

We study a classic bargaining game (á la Rubinstein [9]) with the crucial difference
that parties are allowed to invest part of the surplus available. Therefore, in addition
to the standard problem of how to divide the surplus for their own consumption,
parties face the additional problem of how much to invest. Since the level of invest-
ment affects the future capital stock and consequently, the surplus available in the
following bargaining stage, the model aims to capture the dynamic nature of long-
term negotiations. That is, current agreements affect future bargaining possibilities.
For instance, trade talks and negotiations over environmental issues typically take
place in a series of rounds in which initial agreements are revisited and revised.

We focus on a finite-stage game: the number of bargaining stages n, is finite,
although each stage can be protracted potentially forever. Moreover, we study the
asymptotic game in which the number of bargaining stages tends to infinity. We
solve the game recursively, for any arbitrary n, and show that when the number

Francesca Flamini
Department of Economics, University of Glasgow, Glasgow, G12 8RT, UK
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of bargaining stages n increases, parties invest independently of n for most of the
game (only towards the final stages is there a deadline effect). The convergence
of the equilibrium demands is also fairly fast and the speed of convergence can
be increased when parties are more impatient and their elasticity of substitution is
higher, since in this case they invest little in any bargaining stage.

Generally, bargaining games focus on negotiations over consumption levels and
therefore parties do not have the ability to affect future bargaining possibilities (see
Muthoo [7] and Osborne and Rubinstein [8] for recent reviews of bargaining games
and their applications). However, recent studies have attempted to incorporate the
investment problem within bargaining games [7, 10, 3]. Muthoo’s focus is on parties
who share an infinite number of surpluses of the same size (the steady-state station-
ary subgame perfect equilibria) [7]. As a result the investment problem is simplified
since parties need to invest as much as it is necessary so as to have surpluses of the
same size. In this sense the problem of how much parties invest in a strategic frame-
work remains open. Sorger extended the Nash bargaining solution to a dynamic ac-
cumulation game [10]. In each period, parties can reach an agreement (threat points
are endogenized as well); however, the bargaining process is simplified in that it
is given by the solution of Nash products, a cooperative perspective. Flamini [3],
instead, considered different noncooperative bargaining procedures with dynamic
accumulation, including the alternating-offer procedure considered in this chapter,
although in a setting with an infinite number of bargaining stages. The main dif-
ference with [3] is that in this chapter, we use backward induction to identify the
equilibrium. We do not need to impose any functional form on the consumption and
investment rules, as these are simply derived by solving the game. We can also look
at the asymptotic game in which the number of bargaining stages tend to infinity
and study the convergence of the equilibrium demands.

The chapter is organized as follows. In the next section we present the model.
In Sec. 6.3, we provide the algorithm to solve the model. The main features of the
equilibrium are presented in Sec. 6.4. Some final remarks are made in Sec. 6.5.

6.2 The Model

We consider a two-player bargaining game in which bargaining and production
stages alternate (and each stage can start only after the other has taken place). We
focus on the case in which there are n bargaining stages, with n (= 2,3, . . .), which
tends to infinity. Time is discrete, t = 0,1, . . .. In the first period, at t = 0, the surplus
available is k0, by assumption, and a bargaining stage starts. In the subsequent peri-
ods, during the production stage, the surplus is generated according to the produc-
tion function F(kt) = kt , where kt is the capital stock at period t, with t = 0,1, . . ..1

Production takes time and τ indicates the interval of time in which the surplus is

1 To simplify the numerical analysis we assume that there is a constant gross rate of return equal to
1. The analysis can be generalized to a constant gross rate equal to G (as long as G is sufficiently
small, so that for the asymptotic game the transversality condition holds).

132 F. Flamini

     irmgn.ir



generated. At the beginning of the game or once the surplus is generated, a bar-
gaining stage begins and players attempt to divide the surplus according to a classic
infinitely repeated, alternating-offer bargaining procedure [9].2 In our framework,
a proposal by player i consists of a pair (ixt , iIt), where iIt is the investment level
proposed by i and ixt is the share demanded by i over the remaining surplus. The
subscript t indicates the dependence of the proposal (ixt , iIt) on capital at time t,
denoted by kt , that is, the state variable in the model. If there is an acceptance, the
bargaining stage ends and the proposer’s current per period utility is ui(ixt , iIt) with

ui(ixt , iIt) =
ic

1−η
t

1−η
for η < 1 (6.1)

where ict = ixt(kt− iIt) is the level of consumption.3 The output available at the
next bargaining stage (at t + 1) is F(kt+1), where kt+1 is the capital stock in the
next period and it is given by the investment level iIt , that is kt+1 = iIt .4 Regard-
less of whether the proposal at t has been successful the responder at t becomes the
next proposer. If there is a rejection, after an interval of time ∆ , the rejecting player
can make a counter offer. We assume that the capital stock remains unchanged.5 In
perpetual disagreement, parties consume ict = 0. Players’ time preference is repre-
sented by the common discount rate h. Since intervals of time have different lengths,
there are two distinct discount factors in our model: the between-cake discount fac-
tor α = exp(−hτ), which takes into account that production takes time, and the
between-cake discount factor δ = exp(−h∆), which takes into account that there
is an interval of time between a rejection and a new proposal. This discounting
structure has been introduced first by Muthoo [6]. It is reasonable to assume that
a bargaining round is quicker than a production stage, since a counter offer can be
made fairly quickly (that is, α < δ ,; see [6]).

The focus is on Markov perfect equilibria (MPE), where the Markov strategies
specify players’ actions for each time period t as a function of the state of the system
at the beginning of that period, kt .

The timeline in a specific example of this game is represented in Fig. 6.1 below.
In this example it is assumed that there are only three bargaining stages (n = 3)
with g rejections only in the first stage. Hence, in the first stage after g rejections
(or g+1 rounds), a player, say j (with j = 1,2) accepts the proposal (ix0, iI0) made

2 In a standard bargaining game, the interdependence between players’ strategies is related to
a single division (parties makes offers and counter-offers until they find an agreement); in our
framework it has also a dynamic component, since current actions affect future payoffs (via the
investment level).
3 The case of η ≥ 1 is excluded to simplify the analysis. The analysis could be extended to the
case of η ≥ 1, as long as shares are normalized so that even when players do not consume any
positive share their payoffs are bounded.
4 We assume that there is maximum depreciation. However, the analysis can be easily extended to
smaller level of capital depreciation.
5 Alternatively, production takes place again and therefore the capital stock depreciates. In this
case, the qualitative results we show in the chapter are unaffected, since the equilibrium is charac-
terized by no delays even when the capital stock does not shrink after a rejection.
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by his opponent, where the subscript 0 indicates the dependence of the demand
on the initial capital stock, k0. In the next stage, production takes place and the
surplus for the second bargaining stage is given by k1 = I0. Since players alternate in
making offers and there are no rejections in the second/third bargaining stage, then
the successful proposer at the beginning of the second bargaining stage is player
j, with the division ( jx1, jI1), while at the beginning of the third bargaining stage,
player i, after production, makes a successful proposal, say (ix2, iI2). This is the
end of the game in this example. Then, player i’s sum of discounted utilities is as
follows6:

δ g

1−η
(

1

∑
t=0

(α2t (
ix2t(k2t − iI2t))

1−η)+ α
(
(1− jx1)(k1− jI1))

1−η)

Similarly, for player j,

δ g

1−η
(

1

∑
t=0

α2t (1− ix2t)(k2t − iI2t))
1−η + α ( jx1(k1− jI1))

1−η)

6.3 Algorithm to Identify the Solution

Despite the fact that each bargaining stage can last potentially forever, when the
number of bargaining rounds n is finite the game can be solved using backward in-
duction, since it is known that the last stage is the Rubinsteinian game, which has a
unique solution with immediate agreement. For any n, at the last stage, in equilib-
rium, players will invest nothing7 and divide the surplus for their own consumption
as in the classic Rubinsteinian game [9], but with CES utilities. This implies that if
there are only two bargaining stages, at the beginning of the first bargaining stage the
value of the continuation game (that is, what players will obtain in the last stage)
is already known (aside from the size of the surplus, which is defined in the first
stage). Hence, we can easily solve the problem at the beginning of the game. In this
section, we will first focus on this case (n = 2). Once this is solved we will iterate
the method for n bargaining stages (with n > 2).

Assume that there are only two bargaining stages (n = 2). As already pointed
out, the last bargaining stage is the Rubinsteinian game (players will invest nothing).
Then, at the first bargaining stage, a proposer will make an acceptable offer if it is
such that the responder is weakly better off in accepting it rather than rejecting it
and making a counter offer (when the constraint is binding it is called an indifference
condition, since the responder is indifferent with respect to accepting or rejecting the

6 The general formula for players’ utility is much more complex, since there may be many rounds
in a single bargaining stage, due to delays, and many bargaining stages or surpluses to be shared.
However, the elements it contains are, in essence, the same as those outlined in this simple example.
To simplify we omit the general formula, but it is available upon request.
7 Or disinvest if the depreciation rate is less than 1.
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Fig. 6.1 Timeline for a game with three bargaining stages with g (no, respectively) rejections in
the first (second/third, respectively) stage.

offer; see, for instance, Muthoo [7]).8 In other words, at the beginning of the game,
the problem of a proposer, say i, is given by the following Lagrangian function Li:

Li=max
xi ,Ii

[xi(k0− Ii)]
1−η

1−η
+

α
1−η

(
δ

1
1−η

1 +δ
1

1−η
Ii)

1−η (6.2)

+ mi(
[(1− xi)(k0− Ii)]

1−η

1−η
+

α
1−η

(
Ii

1 +δ
1

1−η
)1−η)

− miδ (
[x j(k0− I j)]

1−η

1−η
+

α
1−η

(
δ

1
1−η

1 +δ
1

1−η
I j)

1−η)

where mi are the (non-negative) Kuhn–Tucker multipliers, with i, j = 1,2 and i 6= j.
The first row of the maximisation problem is player i’s current payoff after imple-
menting the agreement (xi, Ii), plus his discounted utility for receiving the Rubin-
steinian share, as a responder, over the surplus Ii. The rest of the Lagrangian includes
player j’s indifference condition. In particular, the expression in parentheses in the
second line is player j’s sum of discounted utility for accepting the proposal (xi, Ii)
(or player j’s current per-period payoff followed by his discounted utility for receiv-
ing the Rubinsteinian share, as a proposer, over the surplus Ii), while the expression
in parentheses in the third line is player j’s sum of discounted utility after making
the counter offer (x j, I j). The indifference condition says that the former has to equal
the latter multiplied by the discount factor δ , since there has been a rejection.9

8 As for the Rubinsteinian game delays are not profitable in the first bargaining game. Within
a dynamic framework, players can always invest a sufficiently high amount as to avoid costly
rejections. Instead, there can be strategic delays in bargaining games, when these can resolve some
uncertainty [1] or when more than two players are involved [2].
9 For readers more familiar with dynamic programming, the problem can generally be written using
a Bellman equation [4]. In this case, each proposer’s value function is given by the maximization
of the current per period utility, assuming players reach an agreement, plus the discounted value of

6 Recursive Bargaining with Dynamic Accumulation 135
     irmgn.ir



The first-order conditions (FOCs) with respect to the controls imply that

xi =
1

1 +m
1
η
i

(6.3)

Ii = ϕ ik0, where ϕ i =
1

1 +

(
1+m

1
η
i

)(
1+δ

1
1−η

) 1−η
η

α
1
η (δ+mi)

1
η

(6.4)

Using the FOCs (6.3) and (6.4) in the indifference conditions (or the FOCs with
respect to the multipliers), i.e.,

(
[(1− xi)(k0− Ii)]

1−η

1−η
+

α
1−η

(
Ii

1 +δ
1

1−η
)1−η) =

= δ
[x j(k0− I j)]

1−η

1−η
+ δ

α
1−η

(
δ

1
1−η

1 +δ
1

1−η
I j)

1−η

we obtain

(m
1
η
i

(
1+ δ

1
1−η
) 1−η

η
)1−η + α(

α
1
η (δ + mi)

1
η

1 +δ
1

1−η
)1−η = (6.5)

= δ ((1 +δ
1

1−η )
1−η

η )1−η + αδ 2(
α

1
η (δ + mi)

1
η

1 +δ
1

1−η
)1−η

for i, j = 1,2 and i 6= j. The focus is on symmetric solutions.10 Then, mi = m, ϕ i = ϕ
for i = 1,2 and the system becomes:

(
1+ δ

1
1−η
) 1−η

η
(

m
1−η

η − δ
)

+ α
1
η (1−δ2)(δ +m)

1−η
η = 0 (6.6)

By necessity, the following must hold:

m
1−η

η < δ

the continuation game (based on the Rubinsteinian shares for the last bargaining stage). In addition
an offer is accepted if the responder’s sum of discounted utility in case of an acceptance is not
smaller than his discounted utility in the case where he rejects the offer and makes a counter-offer.
Note that this is a constrained optimization in which the constraint has a recursive structure, since
it includes the opponent’s value function.
10 We solved system (6.5) numerically for a range of discount factors, and no asymmetric solutions
could be identified (we excluded the unreasonable range of small discount factors with α < δ [6].
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If not, the left hand side of (6.6) would be always positive for any α and δ in (0,1)
and therefore by the principle of complementary slackness, the multiplier m would
be zero, in contradiction with the assumption of

m
1−η

η ≥ δ > 0

Then, for

m
1−η

η < δ

Eq. (6.6) becomes

(
1+ δ

1
1−η
) 1−η

η
(

δ −m
1−η

η
)

= α
1
η (1−δ2)(δ + m)

1−η
η (6.7)

It is still possible that corner solutions exist (that is, m
1−η

η < δ and the left hand
side of (6.6) is positive); however, this requires sufficiently impatient parties. Note
that i t is straightforward to check that for δ which tends to 1, there are only interior
solutions, i.e.,

0 < m
1−η

η < δ

In the next proposition we derive an algorithm to solve the iteration process when the
number of bargaining stages is n (with n≥ 3). We focus on interior solutions since
as already shown for the two-stage game this is the only solution for sufficiently
patient players.

Proposition 6.1. When the number of bargaining stages is n (with n ≥ 3), the sub-
game perfect equilibrium proposal is given by the following shares:

xn =
1

1+ m1/η
n

(6.8)

ϕn =
an

an + bn
(6.9)

where

an = (α(cn−1 +dn−1mn))
1
η (6.10)

bn = 1 +m1/η
n (6.11)

cn = ((1− xn)(1−ϕn))
1−η +αϕ1−η

n dn−1 (6.12)

dn = (xn(1−ϕn))
1−η + αϕ1−η

n cn−1 (6.13)

and

c2 = ((1− x2)(1−ϕ2))
1−η + α(

1

1+ δ
1

1−η
ϕ2)

1−η (6.14)

d2 = (x2(1−ϕ2))
1−η + α(

δ
1

1−η

1 +δ
1

1−η
ϕ2)

1−η (6.15)
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and the multiplier mn is the solution of the following equation

mn
1−η

η − δ
b1−η

n
(1−ϕn)

1−η + αϕ1−η
n (dn−1− δcn−1) = 0 (6.16)

Proof. We numerically solve (6.7) for m. The solution is named m2. The subscript 2
indicates that the solution is related to the game with two bargaining stages. Then,
the MPE demand (x2,ϕ2) is given by (6.3) and (6.4).

Let j be the first mover at t = 0 when there are three bargaining stages (n = 3).
Then, the problem is

max
x j ,I j

[x j(Gk0− I j)]
1−η

1−η
+

α
1−η

I1−η
j c2

where c2 is defined in (6.14). The immediate agreement condition implies that the
expression below must be zero:

[(1− x j)(k0− I j)]
1−η

1−η
+

α
1−η

I1−η
j d2− δ

(
[x j(k0− Ii)]

1−η

1−η
+

α
1−η

I1−η
j c2

)

where d2 is defined in (6.15). Then, the first order condition implies that x j and I j

have the same linear structure as in (6.3) and (6.4), in particular (6.8) and (6.9).
Also the indifference condition can be written as in (6.16), which is one equation in
one unknown, the multiplier mn. A solution to (6.16) defines the solution to (xn,ϕn),
given (6.10)–(6.15) with n = 3.

Similarly, for a game with n bargaining stages (with n > 3), x j and I j are given
by (6.8) and (6.9) with an and bn as in (6.10)–(6.13). The indifference condition can
be written as in (6.16). This defines the multiplier mn. That is, a solution to (6.16)
defines the solution to (xn,ϕn). ⊓⊔

Proposition 6.1 allows us to solve the dynamic game for any number of bargain-
ing stages. In the next section, we characterize the solution.

6.4 Features of the Equilibrium

In this section we (numerically) solve the game by using the algorithm in Proposi-
tion 6.1 with the aim of highlighting the main features of the solution. First of all,
the rules which specify the investment and consumption levels in equilibrium are
simple, as shown in the following remark.

Remark 6.1. The investment and consumption levels in equilibrium are linear func-
tions of the capital stock.
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Proof. The first order conditions (6.3) and (6.4) and the indifference condition (6.7)
imply that the multiplier, the consumption and the investment shares are independent
of the capital stock. By iteration, this can be proved also for n > 2 (see (6.16)). ⊓⊔

Numerical examples of the equilibrium consumption and investment shares are
depicted in Figs. 6.2 and 6.3.11 Figure 6.2 (6.3, respectively) represents the equi-
librium consumption (investment, respectively) shares for different elasticities of
substitution (η equal to 1/3, 1/2 and 2/3) when the game has n bargaining stages
(with n = 1,2, . . .) and the discounting structure is (α,δ ) = (0.8,0.9).12 Figures 6.2
and 6.3 show a second feature of the solution, namely, in equilibrium, investment
and consumption shares decrease with the elasticity of substitution (which is in-
versely related to η). This is due to the curvature of the utility function in (6.1). As
η increases the utility in (6.1) is higher and has a higher curvature. As a result par-
ties prefer more consumption smoothing, hence they invest more (as shown in Fig.
6.3). A higher investment today implies higher consumption levels for both players
in the future. The current proposer can then exploit a trade-off between current and
future consumption: By investing more today he is able to extract a relative higher
surplus today for his own consumption (as shown in Fig. 6.2). This explains why
when η increases, x and ϕ increase.

5 10 15 20 25 30 35 40 45 50 55 60
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

x

n

 

 

η=1/3

η=1/2

η=2/3

Fig. 6.2 Equilibrium shares x over the number of bargaining stages n for different levels of η .

11 For any given discount structure (α,δ ) and η, we find a unique sequence of demands, one
demand for each bargaining stage. That is, we searched across a range of starting values when
using the algorithm and found a unique sequence.
12 Similar graphs with different sets of discounting factors (α ,δ ) are omitted for simplicity.
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Fig. 6.3 Equilibrium investment shares ϕ over the number of bargaining stages n for different η .

A third feature of the solution, again shown in Figs. 6.2 and 6.3, is that the equi-
librium demands converge as the number of bargaining stages increases. That is,
the equilibrium demands (xn,ϕn) are independent of n as long as n is sufficiently
large. Figures 6.2 and 6.3 show that if the number of bargaining stages is small, say
less than 10, then consumption and investment shares vary in every stage (since the
deadline effect is strong). However, for n larger than 10, players’ investment and
consumption plans are (almost) unchanged, independently of n, except when they
are approaching the last stages. For instance, with 60 bargaining stages (n = 60),
the equilibrium demands appear to be very similar for the first 50 bargaining stages,
then share consumed and invested decline when the deadline effects become domi-
nant.

We further explore the convergence of the equilibrium demands in the following
proposition.

Proposition 6.2. The speed of convergence of the MPE demands in the asymptotic
game increases with the elasticity of substitution and parties’ impatience.

This is shown in Tables 6.1–6.2.13 The former indicates the equilibrium demands
when parties are more impatient (the discount factors are (α,δ ) = (0.8,0.9), in Fig.
6.1 and (α,δ ) = (0.9,0.95) in Fig. 6.2). The tables also show the bargaining stage
where the demands converge, named cr. In other words, if the game has n bargaining
stages, with n > cr, then the equilibrium demands are unchanged in the first n− cr

13 Similar tables with different sets of discount factors are omitted for simplicity.
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stages (the lower the cr the higher the convergence speed). Both Tables 6.1 and 6.2
show that convergence is quicker when η is smaller (or the elasticity of substitution
is higher). By comparing Tables 6.1 and 6.2, one can show that for any given level
of η , convergence increases when parties are more impatient (cr is lower in Table
6.1, where parties are more impatient).

The intuition is that parties who are more impatient discount future payoffs more
strongly, hence, they invest less (and consume more). As a result, the MPE demands
converge more quickly in a game with impatient parties, since even in games with
a small n, parties invest little. Similarly, since as explained above, the elasticity of
substitution affects negatively the investment level (i.e., the smaller the η , the less
parties invest), convergence is quicker when η is smaller.

Table 6.1 The equilibrium demands for discounting (0.8, 0.9), when the number of bargaining
stages tends to infinity; cr indicates the bargaining stage where demands converge.

η = 1/3 η = 1/4 η = 1/2 η = 2/3 η = 3/4

x 0.5824 0.6182 0.7167 0.8595 0.9381

ϕ 0.4025 0.4992 0.6100 0.6571 0.6666

cr 24 31 44 58 59

Table 6.2 The equilibrium demands for discounting (0.9, 0.95), when the number of bargaining
stages tends to infinity; cr indicates the bargaining stage where demands converge.

η = 1/3 η = 1/4 η = 1/2 η = 2/3 η = 3/4

x 0.6184 0.5808 0.7200 0.8639 0.9416

ϕ 0.7200 0.6506 0.7910 0.8185 0.8239

cr 63 47 87 101 113

Finally, we show that bargaining can be efficient when counter offers can be
made very quickly (in accordance with Lockwood and Thomas [5]14 and Flamini
[3]).

Proposition 6.3. At the limit of ∆ that tends to zero, players invest and consume
efficiently.

Proof. To simplify the analysis, we focus on the case of η = 1/2 (although numeri-
cally it can be shown for any η < 1). Then we can solve analytically (6.7), and the
multiplier for the two-stage game is

14 Lockwood and Thomas [5] showed that the level of cooperation among players tends to the
efficient level in the limit as players become patient, although their framework is quite different
from ours, since players cannot bargain.
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m2 =
δ [(1+ δ2)−α2(1−δ)]

(1 + δ2)+ α2(1− δ)

Moreover, at the limit for ∆ that tends to 0, the multiplier m tends to 1 and therefore
parties share equally the surplus not invested and invest a share equal to

ϕ =
α2

1 + α2 (6.17a)

It can be show that the noncooperative solution coincides with the efficient level of
consumption and investment. Indeed, a social planner would maximize the following
expression:

2

∑
i=1

1

∑
t=0

ui(ixt ,t Ii) (6.18)

In the last bargaining stage, since n = 2, the social planner would split the remain-
ing surplus among the symmetric players (without investing any positive amount).
Then, in the first bargaining stage the problem is to maximize

max
xi ,Ii

[xi(k0− Ii)]
1−η

1−η
+

[(1− xi)(k0− Ii)]
1−η

1−η
+

2α
1−η

(
1
2

Ii

)1−η

The FOCs imply that at the first stage xi = 1/2 and

Ii =
α1/η

1 +α1/η k0

Hence, the socially optimal solution coincides with the noncooperative solution for
η = 1/2. Similarly, with three bargaining stages (n = 3), at the limit for δ that tends
to 1 it can be shown (see Proposition 6.1) that m3s tends to 1 and therefore x3s tends
to 1/2 while the share invested tend to

lϕ3s =
α2

1+ 2α2

which again coincides with the socially optimal solution. The problem can be iter-
ated for any n and indeed any η , although we need to rely on numerical solutions.
For instance, using Proposition 6.1 for the asymptotic game (n tends to infinity) with
η = 1/2, (α,δ ) = (0.9,0.99), the shares invested are 0.809, and the proposers ob-
tain shares equal to 0.547. When patience increases, to δ = 0.9999 and α = 0.9,
the share consumed decreases to 0.500 and the share invested increases to 0.810,
which is the social optimum. To see this, we need to solve problem (6.18) for an in-
finite horizon. Since players are symmetric, a utilitarian social planner would split
the surplus not invested equally between parties. The investment problem, instead is
reduced to a standard intertemporal saving/consumption problem [11] and, can be
shown that the social optimal is ϕ = α1/η (which is 0.81 for η = 1/2 and α = 0.9).

⊓⊔
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The intuition is that the frictions in bargaining create a hold-up problem. That
is, a higher investment today will lead to a stream of benefits that the proposer
cannot fully exploit (since he has to reach a compromise with the other party), hence
proposers tend to underinvest. Only when the bargaining is frictionless is bargaining
is efficient.

6.5 Conclusions

Bargaining games with dynamic accumulation are almost unexplored in the litera-
ture but they are interesting because they capture an important feature of real-life
negotiations: Current agreements affect future bargaining possibilities. In this chap-
ter, we analyze a finite-stage model where the number of bargaining stages could be
arbitrarily high.

We showed that, in equilibrium, parties maintain the same offer in each bargain-
ing stage independently of the capital stock for sufficiently long games, only closer
to end of the game, their investment shares drop and so do their consumption shares
(deadline effect).

The equilibrium consumption and investment levels follow a simple rule: they
are linear functions of the state variable, that is, the capital stock. In dynamic games
often the attention is on linear Markov strategies, to simplify the analysis, however,
in our model the linear rules are derived by solving the game.

It can be shown that our qualitative results are robust and do not depend on the
procedure chosen (as long as we exclude extreme procedures such as the ultimatum,
since in this case the incentives in the game are strongly modified). Although the
alternating-offer procedure seems realistic in many negotiations, other procedures
could be considered, for instance, a random proposer mechanism. Such a change
would not modify the features of the equilibrium, making the results of our model
fairly robust.
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Chapter 7
Distributed Nonlinear Estimation for Diverse
Sensor Devices

Andrea Simonetto and Tamás Keviczky

Abstract Distributed linear estimation theory has received increased attention in
recent years due to several promising, mainly industrial applications. Distributed
nonlinear estimation, however, is still a relatively unexplored field despite the need
for such a theory in numerous practical problems with inherent nonlinearities. This
work presents a unified way of describing distributed implementations of three com-
monly used nonlinear estimators: the extended Kalman filter (EKF), the unscented
Kalman filter (UKF) and the particle filter. Leveraging on the presented framework,
we propose new distributed versions of these methods, in which the nonlineari-
ties are locally managed by the various sensors, whereas the different estimates are
merged based on a weighted average consensus process. We show how the merging
mechanism can handle sensors running different filters, which is especially useful
when they are endowed with diverse local computational capabilities. Numerical
simulations of the proposed algorithms are shown to outperform the few published
ones in a localization problem via range-only measurements. Quality and effective-
ness are investigated in a heterogeneous filtering scenario as well. As a special case,
we also present a way to manage the computational load of distributed particle filters
using graphical processing unit (GPU) architectures.
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7.1 Introduction

In the past few years, the large number of potential applications of sensor networks
have increased the interest in distributed estimation techniques, where sensors com-
pute estimates locally and communicate with others to improve their quality. So far,
research has been mainly focused on state estimation of linear dynamical systems.
References [1, 7, 37, 28] give a comprehensive overview of the field.

There are many situations in which such a framework cannot be applied, due
to nonlinearities either in the dynamical system or in the sensing equation or both.
An important example of these scenarios is the localization of a moving object via
range-only measurements. This particular problem arises in applications such as
indoor robot localization [36, 20, 24], underwater sensor networks [9, 11, 21] and
space exploration [29], among others.

Although there are a few cases in the literature in which distributed nonlinear
estimation has been addressed, a clear performance evaluation is still missing. For
instance, in [28] a distributed extended Kalman filter is suggested, but not imple-
mented, while in [8] and [15] distributed unscented Kalman filters and distributed
particle filters are presented, respectively, without extensive analysis.

Our aim in this contribution is to propose effective distributed algorithms for
nonlinear estimation. We introduce a unified framework, in which we design ver-
sions of distributed extended Kalman filters, distributed unscented Kalman filters
and distributed particle filters that show better performance in simulation compared
to the aforementioned literature. The core of our framework is a merging mechanism
based on a weighted consensus procedure similar to the one developed in [39].

Furthermore, we will show how the mechanism can handle different filters im-
plemented on different sensors. This is especially practical when the sensor devices
have different computational capabilities and we want to exploit their resources effi-
ciently. In this respect, the proposed framework can be used to tailor the composition
of various filters to the diverse sensor devices in the network.

Finally, we focus on a special case of filter and sensor computing architectures
and show how the computational load of distributed particle filters can be managed
efficiently using Graphical Processing Units (GPUs).

It is well known that in nonlinear, non-Gaussian problems, particle filters usually
outperform Kalman filter-type methods but suffer from very high computational
requirements when using many particles. This drawback could be mitigated by re-
liance on general purpose GPU applications, which are making massive paralleliza-
tion of algorithms possible by distributing computing tasks on multiple cores, lead-
ing to significant improvements in computational time. These trends are reflected
by the rise of reasonably priced graphical processing units featuring thousands of
GPU cores that compete with and supersede the best traditional desktop processing
architectures. It is not far fetched to imagine thousands of particles running on each
one of the thousand cores.

This chapter is organized as follows: a description of the distributed estimation
problem and our problem formulation is presented in Sec. 7.2. Section 7.3 and Sec.
7.4 contain our main contributions on distributed nonlinear estimation, while Sec.
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7.5 explores the distribution of computations on different cores for particle filters.
In Sec. 7.6, the algorithms are evaluated in a simulated localization problem via
range-only measurements for an Autonomous Underwater Vehicle. Conclusions are
drawn in Sec. 7.7.

7.2 Problem Formulation

7.2.1 Notation

The state variable is denoted by x ∈ Rn, z ∈ Rnz the measurement, w ∈ Rnw and
v ∈Rnv two independent zero mean Gaussian noise terms; x̂ represents the estimate
of x; x(k) is the state at time instant k; zi(k) is the measurement vector of sensor i
at time k. For all the other variables the same notation holds. If ai(k) is a generic
vector variable associated with sensor i at time k, and i = 1, . . . ,N, then a(k) =
(aT

1 (k), . . . ,aT
N(k))T is a stacked vector of all the sensor variables.

7.2.2 Distributed Estimation

Let the nonlinear time-invariant dynamical model of the system with state x be

x(k +1) = f (x(k),w(k)) (7.1)

where f is a nonlinear function. Let the process be observed by N sensors each with
some processing and communication capability. The sensors are labeled i = 1, . . . ,N
and form the set V . The communication topology is modeled as an undirected graph
G = (V ,E), where an edge (i, j) is in E if and only if node i and node j can exchange
messages. Let the graph be connected, let the sensor clocks be synchronized and
assume perfect communication (no delays or packet losses). The nodes with which
node i communicates are called neighbors and are contained in the setNi. Note that
node i is not included in the set Ni. We define Ji =Ni ∪{i} and Ni = |Ji|. Let the
measurement equation for each sensor zi(k) be

zi(k) = gi(x(k))+ vi(k), i = 1, . . . ,N (7.2)

where vi(k) is a Gaussian noise term and gi(·) nonlinear functions. We consider
a distributed computation setting, where each sensor computes its version of the
state estimate locally, and x̂i(k) denotes the local estimate of sensor i at time k.
This problem set-up leads to the following distributed estimation problem. Allowing
communication only within the neighborhood, estimate N different copies of the
state x̂i(k) so that the following requirements are satisfied:

(R1)each x̂i(k) is an unbiased estimate of x(k) at each time step k;
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(R2)as k→∞, all the local estimates x̂i(k) converge to the same value.

In this chapter, we are interested in algorithms that do not exchange raw measure-
ments among the neighbors but communicate only computed quantities with aggre-
gated information content (such as local estimates). This implies that the structure of
our algorithms will consist of N local filters and a distributed merging mechanism,
which aggregates the different estimates.

Remark 7.1. The information exchange graph G is assumed to be time-invariant.
However, under weak technical conditions, we could extend the algorithms to situ-
ations in which the graph G is time-varying; see for instance [39].

Remark 7.2. Since the noise process is not assumed to be bounded, Requirement R2
should be interpreted in an almost sure sense.

7.2.3 Distributed Localization

In this chapter, we will use a distributed localization problem via range-only mea-
surements to demonstrate and analyze the proposed algorithms. This problem is a
good example of a distributed nonlinear estimation problem where the process is
locally unobservable by the individual sensors. Let xp be the position of a moving
agent and bi, i = 1, . . . ,N, the positions of the fixed range sensors. The measurement
equation can then be written as

zi(k) = ||xp(k)−bi||+ vi(k), i = 1, . . . ,N (7.3)

Since the state (agent position) is locally unobservable, the sensors have to commu-
nicate with each other. In the following section we will present some possibilities
for combining their estimates.

7.3 Consensus Algorithms

We want the distributed estimation algorithms that we are interested in to operate
in such a way that the local estimates eventually converge to the same value (R2).
This could be fulfilled by applying an appropriate consensus algorithm that merges
the different estimates, assuming that R1 is satisfied by the choice of a suitable local
nonlinear filter.

Consensus algorithms can be represented by linear maps between some local
variables. For example, the estimates x̂ j(k) with j ∈ Ji, and their weighted nodal
average x̄i(k), where

x̄i(k) = ∑
j∈Ji

[W ]i j x̂ j(k)

can be represented in matrix-vector notation as
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x̄(k) = (W ⊗ IN) x̂(k) (7.4)

Equation (7.4) constitutes a consensus iteration. Running this iteration τ times cor-
responds to repeating the update

{
x̄(k) = (W ⊗ IN)x̂t−1(k)

x̂t(k) = x̄(k)

with x̂0(k) = x̂(k) from t = 1 to τ . The τth iteration can be compactly computed as
(W τ ⊗ IN)x̂(k). The matrix W is required to satisfy

lim
τ→∞

W τ =
1
N

1N1T
N (7.5)

so that the consensus iterations do not only converge but also give the mean of the
initial values (which is given the name average-consensus, as a particular instance
of the more general χ-consensus [12]). This property has been used in the last few
years [30] as a means of averaging the different estimates x̂i(k) without requiring N
(see also in [27, 26, 13]).

A typical form for W is
W = IN− εL

where L is the weighted Laplacian associated with the graph G and ε is a positive
constant, which has to be less than 1 to ensure convergence.

In its typical implementation, a consensus algorithm merges the different x̂i(k)
according to

A[x̄, i] =A[x̂, i]+
ε

Ni−1 ∑
j∈Ni

(A[x̂, j]−A[x̂, i]) (7.6)

delivering

x̄ =A[x̄, i] =
1
N ∑

j∈V
A[x̂, j]

for all i as τ →∞. Often, only a few consensus iterations are taken (τ ≪∞), or
even simply one, for instance in [28]. This reduces significantly the communication
among sensors, but causes the convergence property to be lost. Detailed analysis of
such interleaved schemes, where local estimation problems are solved followed by a
finite number of consensus iterations repeatedly, is still an open problem. The reader
is referred to [23] for a stability/convergence proof applied to a particular case.

We propose to use a different merging mechanism, based on a weighted ver-
sion of the typical algorithm (7.6), similarly to [39]. We make use of the following
lemma:

Lemma 7.1 ([39]). Given a set of independent and unbiased estimates, A[x̂, i], with
associated covariance matrices, A[P, i], where i ∈ V , the following weighted aver-
aging:
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x̂ =

(

∑
j∈V
A[P−1, j]

)−1

∑
j∈V
A[P−1, j]A[x̂, j]

P−1 = ∑
j∈V
A[P−1, j]

gives the linear minimum-variance unbiased estimate of x.

The weighted averaging given in Lemma 7.1 can be seen as

x̂ = Y−1Z

P−1 = NY

where Z = (1/N)∑ j∈VA[Z, j], Y = (1/N)∑ j∈VA[Y, j], A[Z, i] = A[P−1, i]A[x̂, i],
A[Y, i] = A[P−1, i]. Therefore Z and Y can be calculated using standard averaging.
Hence a consensus iteration can be implemented in the form

A[Z̄, i] =
1
Ni

∑
j∈Ji

A[Z, j]

A[Ȳ , i] =
1
Ni

∑
j∈Ji

A[Y, j] (7.7)

which has iteration matrix W , where [W ]i j = 1/Ni if and only if j ∈Ji, and [W ]i j = 0
otherwise. Furthermore, W can be proven to satisfy (7.5).

Note that in general the assumption of independence in Lemma 7.1 will not hold.
The different x̂i(k) local state estimates will be correlated since the sensors are ob-
serving the same model. This implies that the optimality of the merged estimate will
be lost. We can still show however that the merged estimate will be unbiased.

Lemma 7.2. Given a set of possibly dependent but unbiased estimates,A[x̂, i], with
associated covariance matrices, A[P, i], where i ∈ V , the weighted average

x̂ =

(

∑
j∈V
A[P−1, j]

)−1

∑
j∈V
A[P−1, j]A[x̂, j]

P−1 = ∑
j∈V
A[P−1, j]

will also be an unbiased estimate of x.

Proof The expected value of x̂ can be written as

E[x̂] = E



(

∑
j∈V
A[P−1, j]

)−1

∑
j∈V
A[P−1, j]A[x̂, j]




=

(

∑
j∈V
A[P−1, j]

)−1

∑
j∈V
A[P−1, j]E[A[x̂, j]]
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from which the claim follows. 2

Although the merged estimate will not be optimal, constructing an optimal
one would require computing the cross-covariances among all the estimates (i.e.,
E[x̂ix̂T

j ], for all i, j), which leads to adopting a solution that is closer to the cen-
tralized one. Moreover, our numerical simulation studies [34] indicate that the pre-
sented merge algorithm often leads to more accurate localization solutions than do
standard consensus algorithms. Thus, finding a solution that is close to the central-
ized one seems less relevant in practice.

In our numerical experiments we typically employ τ = 1 iteration per update
step. This implies that further analytical studies regarding asymptotic convergence
for k→∞ (R2) and the consistency of the filters are in order. However, from a
practical point of view, one could validate at least the consistency property using
standard tests on recorded data, such as in [3] and [38].

Algorithm 7.1 shows the method for each sensor i.

Algorithm 7.1 Merge algorithm
1: Input: x̂ j(k), Pj(k), j ∈ Ji

2: Merge:

x̄i(k) =

(

∑
j∈Ji

P−1
j (k)

)−1

∑
j∈Ji

P−1
j (k) x̂ j(k)

P̄−1
i (k) = ∑

j∈Ji

P−1
j (k)

3: Output: x̄i(k), P̄i(k)

7.4 Distributed Nonlinear Estimation

Given the premises of the previous sections, our general distributed nonlinear es-
timation framework will consist of N possibly different local filters, connected to
the merge/consensus algorithm as depicted in Fig. 7.1. This setting unifies and sim-
plifies the distributed implementation of three of the most widely used nonlinear
filters, namely the extended Kalman filter (EKF), unscented Kalman filter (UKF)
and particle filter (PF), which will be presented in the next sections. First, the dis-
tributed EKF formulation of [28] will be reviewed, the differences from the new
proposed solution will pointed out. Then, a distributed UKF algorithm will be pro-
posed relying on the same merge mechanism, and finally, a novel distributed particle
filter scheme will be shown and compared with [16, 15]. We note that each local fil-
ter can be chosen to be tailored to the computational capabilities of the particular
sensor device. The benefits of this aspect will be illustrated in Sec. 7.6.2.
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zi

x̄i, P̄i x̂i,Pi

Local Filter i

MERGING

Fig. 7.1 A unified setting for distributed nonlinear estimation. Each cylinder represents a sensor in
the network. The sensors can communicate within their neighborhoods and exchange information.
This is shown via the grey boxes.

7.4.1 Distributed Extended Kalman Filters

Let Fi, Gi and Hi be, respectively:

Fi =
∂ f (x(k),w(k))

∂x(k)

∣∣∣∣
(x̄i(k),0)

Gi =
∂ f (x(k),w(k))

∂w(k)

∣∣∣∣
(x̄i(k),0)

Hi =
∂g(x(k))

∂x(k)

∣∣∣∣
(x̄i(k))

Let Q = E[w(k)wT (k)], Ri = E[vi(k)vT
i (k)]. Define the weighted predicted obser-

vation vector A[o, i], the weighted true observation vector A[y, i] and their nodal
aggregates

A[o, i] = HT
i A[R, i]−1g(Fix̄i(k)), A[o, i] = ∑

j∈Ji

A[o, j]

A[y, i] = HT
i A[R, i]−1zi(k + 1), A[y, i] = ∑

j∈Ji

A[y, j]
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whose differences oi− yi and A[o, i]−A[y, i] represent the mismatch between the
prediction and the measurements. Define the inverse covariance matrix Si and its
nodal aggregate:

A[S, i] = HT
i A[R, i]−1Hi, A[S, i] = ∑

j∈Ji

A[S, j]

The distributed extended Kalman filter (DEKF) algorithm of [28] implements a
typical consensus iteration. For each sensor it consists of the following two steps:
Step 1 (Prediction):

x̌i(k +1) = Fix̄i(k)

P̌i(k +1) = FiP̄i(k)F
T

i + GiQGT
i (7.8)

Step 2 (Update):

(P̄i(k + 1))
−1

=
(
P̌i(k + 1)

)−1
+A[S, i]

x̄i(k +1) = x̌i(k +1)+

P̄i(k +1)(A[y, i]−A[o, i])+ εP̄i(k +1) ·
∑

j∈Ni

(x̌ j(k +1)− x̌i(k + 1)) (7.9)

Our proposed version has a different update step and makes use of Algorithm 7.1:
Step 1 (Prediction): same as in (7.8)
Step 2 (Modified update):

(Pi(k + 1))−1 =
(
P̌i(k +1)

)−1
+A[S, i]

x̂i(k +1) = x̌i(k +1)+ Pi(k +1)(A[y, i]−A[o, i]) (7.10)

Step 3 (Merge):

(x̄i(k + 1), P̄i(k + 1)) = MERGE j∈Ji(x̂ j(k + 1),Pj(k +1))

Note that the consensus algorithm in (7.9) has a form similar to (7.6). In addition,
yi, oi and Si are used in the modified update step rather than yi, oi and Si. The reason
is to reduce the amount of data that the sensors send to each other. Hence, the final
algorithm consists of a modified local prediction-update step, followed by a merge
step.

7.4.2 Distributed Unscented Kalman Filters

The unscented Kalman filter performs a statistical linearization through the use of
a weighted statistical linear regression process. Instead of approximating the dy-
namical model by a Taylor series expansion (such as in EKF), the UKF determin-
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istically extracts so-called sigma points from the noise Gaussian terms and passes
these through the model. From the transformation of these points it computes the
state estimate’s Gaussian distribution. The UKF is generally more accurate than the
EKF, although it is more computationally expensive. Let

(x̂i(k + 1),Pi(k +1)) = UKFi(x̄i(k), P̄i(k),zi(k +1))

be the local UKF, whose formulation can be found for example in [22].
Our proposed implementation of a distributed UKF algorithm is shown in Algo-

rithm 7.2. Note the general structure of a local nonlinear filter and the merging step.
The reader is referred to [8] for an alternative approach, involving exchange of raw
measurements.

Algorithm 7.2 Distributed UKF algorithm
1: Given: x̄i(0) = x̂i(0), P̄i(0) = Pi(0)
2: while new data exists do
3: Input: x̄i(k), P̄i(k)
4: Local UKF:

(x̂i(k +1),Pi(k +1)) = UKFi(x̄i(k), P̄i(k), zi(k +1))

5: Merge:
(x̄i(k +1), P̄i(k +1)) = MERGE j∈Ji(x̂ j(k +1),Pj(k +1))

6: Output: x̄i(k +1), P̄i(k +1)
7: end while

7.4.3 Distributed Particle Filters

While standard particle filters have been studied intensively (a comprehensive
overview can be found in [2]), distributed particle filters are a rather unexplored
research field [35].

Since the field is rather new, the terminology is not always coherent. We will
refer to methods that use central units to collect data from the sensors and com-
pute the state estimate as quasi-distributed particle filter algorithms. This class has
been studied in the literature starting from the work of [4], where three algorithms
have been presented, including more recent papers on hierarchical distributed par-
ticle filters [21]. We will refer to particle filters that do not require centralized data
collection as the standard class of distributed particle filters (DPFs).

Although references on DPFs date back to the work of [31] and [10], detailed
analysis and evaluation studies on their properties have been initiated only recently.
The main reasons are the following:

• Particle filters cannot easily share quantities based on their measurements: they
cannot send particles among themselves because these are weighted with dif-

156 A. Simonetto and T. Keviczky
     irmgn.ir



ferent measurements and thus they are noncompatible. Moreover, sending raw
measurement data can lead to a heavy communication burden [10].

• Particle filters cannot easily be implemented in parallel; in general, the resam-
pling step needs the whole particle population knowledge.

Furthermore, it is crucial that the distributed algorithms be consistent with the cen-
tralized counterparts. For SIR filters this is naturally ensured by the relation

p(z(k)|x(k)) =
N

∏
i=1

p(zi(k)|x(k)),

which states that each sensor can agree on the same p(z(k)|x(k)) , provided all the
sensors have full information. Although this statement is true, we must make sure
that the sensors speak the same language, i.e., either

• they are sharing raw measurements, or
• they have exactly the same particle population, or
• they have the same representation of p(z(k)|x(k)) as a function of x(k).

The first situation above, even though not ideal, is exploited in [31], where a
query-answer protocol is used in order to decrease the communication cost. The
basic idea is that each sensor keeps in memory the entire time-evolution of its parti-
cles and all the measurements and sends some of the particles to the neighbors. The
neighbors decide whether some measurements, at some time instant, are valuable
for them and they reply with the data. This protocol is valuable when the sensors
have enough data to run accurate particle filters on their own, and they need extra
information only in some special cases. A typical application is localization in a
building: When a sensor has a clear view of the object to be localized, it can run
its own particle filter with no extra information. On the contrary, when the object is
hidden behind a wall, it needs some data from other sensors that can see the object.

A completely different approach is studied in [10] where the sensors are sup-
posed to share the very same particle population. An algorithm is developed in the
framework of parametric modeling for this purpose. Here each p(zi(k)|x(k)) is ap-
proximated by a parametric model Fi(x(k),θ i(k)). The model parameters θ i(k) are
estimated at each node from the particles, and then they are disseminated, instead
of the data being disseminated directly. Although interesting, this method imposes
strict limitations on the distributed algorithms. For instance, in some cases the sen-
sors have to be synchronized, and in general, the communication graph among them
has to have a specified structure: either a chain, a ring or a tree.

The recent work of [14] also proposes to share the same particle population
among the sensors, but the particles are drawn from an a priori PDF scaled via
an adaptation mechanism that makes it closer to the a posteriori PDF through pre-
filtering.

Another way to implement a consistent version of DPF is to guarantee that all the
sensors have the same representation of p(z(k)|x(k)). Since this is not easy to ensure,
usually, this condition is relaxed by requiring that the representation of the proposal
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distribution be the same. There are several reasons behind this choice. First, the sen-
sors have different sets of measurements and the particles are not compatible among
the sensors, thus they cannot be shared. Second, even if the sensors agree upon a
common, continuous p(z(k)|x(k)), in the resampling stage they have to increase the
number of particles in order to capture the important features of it. However, this
last computation should be avoided to limit the computational load.

For these reasons, recent research on DPF is focused on guaranteeing that the
PDF from which the samples are drawn be the same among the sensors. This idea is
exploited in the papers [32, 33, 17, 16, 15], where the authors use different models.
In particular, the first three papers focus on a Gaussian Mixture Model, or GMM,
which can be written as

q(x(k + 1)|x(k),z(k +1)) =
C

∑
c=1

λ c(k)N (µ c(k),Σc(k))

where C, λ c, µc, and Σc are parameters of the model and they represent the chosen
number of Gaussians, their relative importance, their mean and their covariance,
respectively. This representation has the drawbacks that, first, the sensors have to
agree upon several variables if C≫ 1, and second, the local representation is built
via an iterative optimization scheme, which requires time and may lead to local
minima (see [32] for further details).

The use of a mono-modal Gaussian distribution generated via an unscented trans-
formation (UT) can instead have accurate results while keeping the algorithm as
simple as possible, as pointed out in [16, 15].

In fact, even if different representations are involved, these approaches can both
fit naturally in the framework of a consensus process and they can be generalized
in the context of Gaussian proposal distributions [18]. The key concept is to use a
Gaussian proposal distribution such as

q(x(k + 1)|x(k),z(k +1)) =N (µ(k),Σ(k))

whereN represents a normal distribution with mean µ(k) and covariance Σ(k).
The pair (µ(k),Σ(k)) is calculated by propagating (x̂(k),P(k)) via an unscented

Transformation, UT, as in [16, 15]

(µ(k),Σ(k)) = UT(x̂(k),P(k))

whereas the couple (x̂(k),P(k)) can be approximated via consensus using the local
couples (x̂i(k),Pi(k)). These can be computed by each local particle filter (at the
preceding time instant) in the following way:
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x̂i(k) =
m

∑
j=1

ω i,k
jxi(k)

j (7.11)

Pi(k) =
m

∑
j=1

ω i,k
j(xi(k)

j− x̂i(k))(xi(k)
j− x̂i(k))

T

(7.12)

where j represents the particle index, m the number of particles, xi(k)
j and ω i,k

j,
respectively, the state and the weight of the jth particle for the ith sensor at time
k. In the formulation of [16], the global couple (x̂(k),P(k)) is approximated via a
consensus algorithm in the form of (7.4):

x̄i(k) = x̂i(k)+
ε

Ni−1 ∑
j∈Ni

(x̂ j(k)− x̂i(k))

P̄i(k) = Pi(k)+
ε

Ni− 1 ∑
j∈Ni

(Pj(k)−Pi(k))

Therefore, after the consensus iteration each local PF has the new proposal distribu-
tion:

q(x(k +1)|x(k),zi(k +1)) =N (µ i(k),Σi(k))

with
(µ i(k),Σi(k)) = UT(x̄i(k), P̄i(k))

In our formulation, we will use the MERGE algorithm instead of the standard
consensus algorithm, thus:

(x̄i(k), P̄i(k)) = MERGE j∈Ji(x̂ j(k),Pj(k))

Algorithm 7.3 presents the proposed modified method. Note that PF indicates the
local particle filter.

Remark 7.3. Note that in [16] the choice of τ for the consensus algorithm is left to
the user as a parameter. We will assume τ = 1 to compare it with our scheme.

7.5 Distributed Computation of Particle Filters on GPUs

Particle filters suffer from higher computational demand than Kalman filters and
extensions, especially when a high number of particles is important. However, their
number should be tunable and increasable to obtain satisfactory results. The aim of
this section is to devise a method to distribute the number of particles on different
processing cores and yet obtain a comparable accuracy as if they were on the same
core. In this section we focus on a single sensor and its processing cores, our aim
being to distribute the computation itself. We stress the fact that in contrast to the
available literature, e.g., [6, 5, 19, 25], we will look for algorithms that do not involve
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Algorithm 7.3 Distributed PF algorithm
1: Given: x̄i(0) = x̂(0), P̄i(0) = P(0)
2: while new data exists do
3: Input: x̄i(k), P̄i(k), zi(k +1)
4: LOCAL PF{

a. Propagation of (x̄i(k), P̄i(k)):

(µ i(k),Σi(k)) = UT(x̄i(k), P̄i(k))

b. Local PF with proposal distributionN (µ i(k),Σi(k)):

(xi(k +1) j,ω i,k+1
j) = PFi(µ i(k),Σi(k),zi(k +1))

c. Compute (x̂i(k +1),Pi(k +1)) via (7.11) - (7.12)

}
5: Merge:

(x̄i(k +1), P̄i(k +1)) = MERGE j∈Ji(x̂ j(k +1),Pj(k +1))

6: Output: x̄i(k +1), P̄i(k +1)
7: end while

extensive communication among the cores and, in particular, do not make use of
centralized information.

Even if recent developments in general purpose multicore GPU architectures
make the study of this question very relevant and interesting, distributing particle
filter computations is not a trivial task. The main reason, as pointed out in the pre-
vious sections, is that usually the resampling step requires us to have knowledge of
all the particles.

We propose in the following a rather simple yet effective idea, which leads to
distributed particle filter computations. First, we assume that all the cores have the
same set of measurements, that is zi(k + 1) for the cores of sensor i. For this reason,
the particles are compatible from core to core and can be shared within each sensor.
Of course, there is no point in sharing all the subsets of particles among the different
cores, since this would simply lead to the nondistributed version. However, inspired
by some ideas in [31], it makes much more sense to share only a few representative
particles. If each of the C cores is running m particles and they share only those
n≪ m with higher weights, then the communication is reduced and the accuracy
will still approach that of a particle filter with mC particles. A simulation example is
shown in the next section to support this observation, while Algorithm 7.4 describes
the main steps of the method.

We note that the proposed algorithm can also be cast in the framework of dis-
tributed estimation presented earlier, if we assume that each local filter has access
to different computing cores.
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Algorithm 7.4 Distributed computation particle filter

1: Given: x(0) j = x(0)
2: while new data exists do
3: Input: x(k) j , zi(k +1)
4: Draw samples for each j:

x(k +1) j ∼ p(x(k +1)|x(k) j)

5: Calculate the weights:
ωk+1

j = p(zi(k +1)|x(k +1) j)

6: Share n particles with high weights with the neighbors.
7: Calculate the local state estimate.
8: Resample m particles.
9: Output: x(k +1) j

10: end while

7.6 Numerical Evaluation and Comparison

Now we present a realistic test case to analyze the proposed algorithms. We consider
the localization via range-only measurements of an autonomous underwater vehicle
(AUV), which can represent a scaled model of many existing underwater robotic
platforms; see for example [11]. We define the error ei(k) of sensor i at time k, as
the distance between the true position at that time and the one estimated by the
sensor i. Let the mean error em be defined as:

em =
1

NT

N

∑
i=1

T

∑
k=0

ei(k)

where T is the final time of simulation. Let the average error be the mean error
averaged on a number of different simulations.

7.6.1 The Mobile Agent Model

The state of the AUV is chosen as x = (xT
p ,sT

p )T , where xp ∈ R3 is the position and
sp ∈R3 is the velocity. The dynamical equations are:

xp(k + 1) = xp(k)+ sp(k)∆ t

sp(k + 1) = sp(k)+
∆ t
m

(
û−α

∥∥sp(k)
∥∥sp(k)

)

û = u +nu

where m is the mass of the vehicle, α is a drag coefficient, and nu is a noise
term. We assume that we have N = 25 sensors (7.3) sparsely distributed at vary-
ing heights from a plane surface. The different heights simulate an uneven seafloor.
We take ∆t = 1 s, T = 130 s, m = 1 kg, α = 1 kg/s. We define an open-loop
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control sequence of magnitude ||u|| = 0.5 N and varying direction, while we se-
lect std(nu) = (0.05,0.05,0.025)T N. We assume that the measurement error in Eq.
(7.2) is std(vi) = 0.1 m, for all the sensors. We consider 500 particles for the DPF.
A schematic representation of the simulation test case is shown in Fig. 7.2.

x

u

s

bi

Fig. 7.2 Schematic representation of the test case.

7.6.2 Simulation Results

In the first scenario we consider, each sensor is assumed to run the same type of
local filter. We collect the results for 2500 different simulation runs, varying ran-
domly the position and the communication range of the sensors. Figure 7.3 de-
picts the average error of the proposed algorithms versus the second smallest eigen-
value of the communication graph Laplacian (also called the algebraic connectiv-
ity). The second smallest eigenvalue, denoted as λ 2, or its normalized counterpart,
λ 2/λ 2,max, dictate the convergence rate of the consensus algorithm [27]. Values
of λ 2/λ 2,max close to 0 represent graphs that are not highly connected, leading to
more distributed estimation problems. Values of λ 2/λ 2,max near 1 correspond to
highly connected graphs, thus estimation problems close to the centralized case.
Here, λ 2,max is the maximum over the graphs from the 2500 simulations. In Fig.
7.3 a dot at the coordinate (φ ,ψ), corresponds to an average error of ψ for graphs
with λ 2/λ 2,max ∈ (φ − 0.05,φ + 0.05). The shaded areas show the standard devia-
tion of these errors. Note that the DEKF estimations are not depicted here because
they do not converge. The DUKF is shown without the standard deviation, to make
the graph more readable; its value is on the order of 0.3 m.

The results show that the proposed DPF outperforms the DPF found in the
literature. This is because the MERGE algorithm delivers estimates closer to the
minimum-variance one than the literature, e.g. [16], where simple averaging algo-
rithms are implemented. This also means that a given set of particles will charac-
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Fig. 7.3 Comparison between the proposed algorithms and that of the literature with respect to
the normalized algebraic connectivity of the information exchange graph. The average error is
computed as the mean error of the sensor averaging 2500 different simulations. The shaded areas
are the standard deviations of the bold lines. The DUKF’s standard deviation is not depicted.

terize the a posteriori distribution better, since the trace of our covariance is smaller
than in [16]. A limitation of our procedure is that this “small covariance” could cause
an impoverishment of the particle diversity, which may lead to a loss in accuracy.
This has not been detected in our simulations but it is a topic of further investigation.

Our results show also that in this simulation study, the DUKF has similar average
error as the DPF reported in the literature. This is important because the DUKF
is less computationally expensive than the DPF, which is crucial in the context of
designing fast yet accurate algorithms.

As a second test scenario, we fix the graph topology with a normalized algebraic
connectivity of 0.6, and we vary the types of filters embedded on each sensor. We
collect data from 1500 simulation runs, with a varying number of PFs, UKFs and
EKFs present in the sensor network and their physical location. Figure 7.4 summa-
rizes our results. The curves represent different numbers of particle filters. Since the
overall number of sensors is fixed (N = 25), one can compute the number of EKFs
present in the network from knowledge of the number of PFs and UKFs.

We can observe that even with a relatively small number of more accurate filters
(for example 1 PF and 5 UKFs), the distributed estimation converges. This was not
the case in the first test scenario, where the local estimates were diverging using
the EKFs alone. This is a very interesting observation that seems to support having
many cheap devices and only a very few expensive ones.

We may also notice that by increasing the number of UKFs, the accuracy im-
proves initially quite noticeably but eventually deteriorates. For a low number of
UKFs, this trend can be explained by the merging mechanism. Let nUKF be the num-
ber of UKFs and nPF the number of the particle filters, and let the covariances of the
filters be PPF, PUKF, and PEKF respectively. Assume, for simplicity and without loss
of generality, a scalar state vector. The average error is then related to the merge
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Fig. 7.4 Results for different filters running on different sensors. The vverage error is computed
as the mean error of the sensor averaging 1500 different simulations. The shaded areas are the
standard deviations of the bold lines. Since the number of sensors is fixed (N = 25), one can
compute the number of EKFs present in the network from the knowledge of the number of PFs and
UKFs.

covariance, whose expression is

P̄ =
PPFPUKFPEKF

25PPFPUKF +PUKF(PEKF−PPF)nPF +PPF(PEKF−PUKF)nUKF

which for a given nPF is proportional to

P̄∝ 1
α + nUKF

with the constant α > 0. This explains the initial decrease of the average error for
an increasing number of UKFs.

The deteriorating performance for an increasing number of UKFs is still under
investigation. One potential reason is the suboptimality of the merging mechanism
and the “small covariance” problem. In fact, the proposed algorithm may lead to a
smaller covariance estimate than the actual one, which leads to optimistic filters [3],
and this could cause a bad selection of the sigma points for the UKFs. Adding more
EKFs increases the average error and brings the estimated covariance closer to the
real one, which improves performance.
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7.6.3 Distributed Computation Particle Filters

In our third and final test scenario, we assume to have access to multiple cores on the
sensors. In order to make the analysis specific to the distribution of the computation,
we consider a centralized unit that collects all the measurements from all the 25
sensors. This centralized unit is equipped with C = 16 cores to compute the estimate
via particle filters. We stress that this setting is not restrictive, meaning that we
do not need the knowledge of all the measurements, and one could still use the
framework we proposed earlier assuming multiple cores on each sensor. However,
by choosing a centralized unit, we will avoid the effects of the distributed estimation
and consensus problem using local measurements, which could lead to bias in our
conclusions. Thus, we assume that each core of the centralized unit can have access
to all the sensor measurements and can communicate with its neighbors. Figure 7.5
shows the computing core configuration.

Fig. 7.5 Core configuration:
the cores are represented by
the squares, while the lines
indicate possible communica-
tion paths.

The simulation parameters are the same as before, only the noise of the sensors is
made 10 times bigger to stress the effect of the particle number, i.e., std(vi) = 1 m.
Five different cases are considered:

• Case 1: m = 2, n = 1;
• Case 2: m = 4, n = 1;
• Case 3: m = 8, n = 1;
• Case 4: m = 16, n = 1;
• Case 5: m = 32, n = 1;

where m is the number of particles in each core and n is the number of particles
that each core sends to its neighbors. The results of 200 simulations for each case
are summarized in Fig. 7.6, where the left bar on each case (from 1 to 5) represents
the average error of a centralized PF with m particles. The right bar represents the
average error of the distributed computations particle filters on all cores. The bar on
the far right represents the average error for a centralized PF with m = 500 particles
and it illustrates the performance that could be obtained with a high number of par-
ticles, indicating an approximate lower bound. The vertical interval lines represent
the standard deviation.

As this numerical example illustrates, the distributed computations particle fil-
ters outperforms a standard centralized PF, which does not even converge for m = 2.
This can be seen more easily when the number of particles is low, since both ap-
proaches hit the same accuracy limit when many particles are used. Moreover, we
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Fig. 7.6 Comparison among different particle filters. The left bar in each case (from 1 to 5) rep-
resents the average error of a centralized PF with m particles. The right bar represents the average
error of the distributed computations particle filters on all cores. The vertical interval lines represent
the standard deviation.

can observe that even using n = 1, the accuracy of the distributed approach is closer
to that of a centralized filter with mC particles than one with m particles. Further
improvements are expected by allowing more communication among the cores, for
example using n = 2. This is encouraging, since using the distributed computations
particle filters decreases computation time by a factor of at least (1+4n/m)/C. This
speedup estimate follows from the fact that each core is at most dealing with m+4n
particles, where 4 is the maximum number of connections with neighboring cores.
This result comes at the price of little communication among the cores. However,
since the interconnection among them is rather sparse, it scales linearly with the
number of cores, and it is not affected by data loss or network reconfiguration.

7.7 Conclusions

We proposed an effective scheme to distribute the nonlinear estimation problem
among different sensing units. We applied the methods to a localization problem
with range-only measurements, designing distributed extended Kalman filters, dis-
tributed unscented Kalman filters and distributed particle filters. The proposed al-
gorithms outperform those found in the literature based on a simulated benchmark.
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Furthermore, we showed how to implement different filters on different sensors tai-
loring the estimators to the specific device, which can be useful to exploit the sensor
capabilities to their maximum. Finally, we proposed a way to decrease the computa-
tional load of particle filters, distributing the particles on different cores. Our initial
promising results suggest that this can be particularly valuable given the recent in-
terest in GPU architectures.

As future work we plan to implement the scheme in a real robotic testbed, which
at this writing is under development. Moreover, we will extend the formulation to
multi-robot settings, in which some of the sensors are moving with the robots them-
selves. Convergence, consistency and optimality of the merging mechanisms repre-
sent important future research directions.
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Chapter 8
Performance Prediction in Uncertain
Multi-Agent Systems Using L1
Adaptation-Based Distributed Event-Triggering

Xiaofeng Wang and Naira Hovakimyan

Abstract This chapter studies the impact of communication constraints and un-
certainties on the performance of multi-agent systems, while closing the local loops
with embeddedL1 adaptive controllers. A communication and adaptation co-design
scheme is proposed that helps to predict system performance. With this scheme,
an agent locally determines its broadcast time instants using distributed event-
triggering. The embedded L1 adaptive controller enables each agent to compensate
for the local uncertainties and disturbances. Performance bounds are derived on the
difference between the signals of the ideal model (in the absence of uncertainties
and with perfect communication) and the real system operating with the proposed
co-design scheme, which can be arbitrarily reduced subject only to hardware limita-
tions. These results can be used for design guidelines in safety-critical applications.

8.1 Introduction

This chapter examines the performance of multi-agent systems in the presence of
communication constraints and modeling uncertainties. We propose a co-design
scheme to bound the derivation of the real system from its ideal model. The pro-
posed scheme includes distributed event-triggering, used for determining broadcast
time, and embedded L1 adaptive controller for compensation of uncertainties. By
introducing an intermediate system (called “desired system”) as a bridge, the design
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of the broadcast event and the L1 controller can be decoupled. Embedded L1 adap-
tive controllers are designed to ensure closeness between the real system and the
desired system, and broadcast-triggering events are designed for closeness between
the desired system and the ideal model.

A multi-agent system contains a number of agents that can be geographically
distributed and each of these agents is controlled by an embedded processor. In-
formation is exchanged among these processors through communication networks.
Control decisions are made based on this information in order to achieve certain
global objectives, such as formation [8], consensus [18], flocking [17], coverage
maximization [6]. A survey on the relevant work in multi-agent systems can be
found in [15].

Most of these results assume that agents are communicating with their neighbors
at will and the system dynamics are completely known. These two assumptions,
however, may not be practical in reality. In practice, communication networks, es-
pecially wireless networks, are digital, which means that the information is trans-
mitted in a discrete-time manner rather than continuous-time. Moreover, all real
networks have bandwidth limitations that may cause delays in message delivery.
Such limitations may severely degrade the overall system performance [13]. So it
is important to effectively manage the available limited network bandwidth. Also,
the uncertainties and the disturbances are unavoidable in implementation of control
systems. They can lead to loss of stability and/or performance. As a result, the real
system may completely deviate from the original design. Therefore an important
control objective is to ensure that the discrepancy between the real system and its
ideal mathematical model can be quantified and reduced in a predictable manner
during the entire operation of the system, including the transient phase.

To solve the communication issue, we focus on event-triggering. Event-triggering
has been widely studied for its benefits in saving the communication and/or com-
putational resource. This is done by having agents broadcast their states only in
case of occurrence of local events. There are several results on implementation of
event-triggering in embedded real-time systems [21, 27], networked control systems
(NCSs) [26, 14], network utility maximization (NUM) [22], consensus algorithms
[7] , etc. Instead of just focusing on stability, as was done in the prior work, this
chapter places emphasis on the performance of the real system both in transient
and steady state. We prove that using the event-triggering scheme in this chapter,
along with the L1 adaptation, the performance of the real system can be rendered
arbitrarily close to the ideal model in the presence of uncertainties and disturbances.

We notice that disturbances in NCSs have been addressed by studies that resort to
input-to-state stability (ISS) of the systems [16, 27, 25, 24]. However, ISS ensures
only a peak bound without guarantees for the frequency content of the signals, i.e.,
robustness. Using theL1 adaptive control technique [10] in each agent, the closeness
between the real system and the ideal one can be adjusted by tuning the adaptation
gain, the bandwidth of the low-pass filter and the thresholds of the local events in a
decoupled way. As a result, in the presence of uncertainties and disturbances the sys-
tem with its fast adaptation can compensate for the effect of disturbances, retaining
the desired transient performance bounds. This may largely improve the prediction
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of the performance of the real systems. Simulation results verify our claims. The re-
sults in this chapter can be used as design guidelines for safety-critical applications,
including air traffic control and collision avoidance in multi-agent systems.

The chapter is organized as follows. Section 8.2 formulates the problem. The L1

adaptive control structure is introduced in Sec. 8.3. Event-triggering and adaptation
co-design are presented in Sec. 8.4. Simulation results are presented in Sec. 8.5.
Section 8.6 concludes the chapter. Finally, the proofs are presented in Sec. 8.7.

8.2 Problem Formulation

Notation: We denote by Rn the n-dimension real vector space and by R+ the real
positive numbers. We also define R+

0 = R+ ∪ {0} and N to be the set of natural
numbers. We use ‖ · ‖1, ‖ · ‖2, and ‖ · ‖∞ for the 1-norm, 2-norm and ∞-norm of
a vector, respectively. Further, ‖ · ‖L1 and ‖ · ‖L∞ are the L1 and L∞ norms of
a function, respectively. The truncated L∞ norm of a function x : [0,∞)→ Rn is
defined as ‖x‖L[0,τ]

∞
, sup0≤t≤τ ‖x(t)‖∞. The symbol In×n is used to represent an

n by n identity matrix; when it is clear in context, we use simply I instead. Given
a vector x ∈ Rn, [x]k ∈ R denotes the kth entry of x and for a matrix A, [A]pq ∈ R
denotes the entry at the pth row and the qth column. For a strictly proper stable
system C(s) and an input signal r(s), the system output y(s) = C(s)r(s) satisfies
‖y‖L[0,τ]

∞
≤ ‖C(s)‖L1‖r‖L[0,τ]

∞
[11].

Consider a multi-agent system consisting of N agents (or “subsystems”). Let
N = {1, . . . ,N} represent the set of agents. The state equation of agent i is

ẋi(t) = Aixi(t)+ Bi(ui(t)+ θ i(t)φ i(xi(t)))

xi(0) = x0
i , (8.1)

where xi : R+
0 →Rn is the state of agent i, ui : R+

0 →Rm is the control input of agent
i, x0

i ∈ Rn is agent i’s initial condition, Ai ∈ Rn×n,Bi ∈ Rn×m are known matrices
with appropriate dimensions, rank(Bi) = m≤ n, (Ai,Bi) is controllable, φ i : Rn→Rl

is a known function and θ i : R+
0 → Ωi is an unknown mapping from t to a known

compact set Ωi = {θ i ∈ Rm×l | |[θ i]pq| ≤ bi
pq,∀p = 1, . . . ,m, ∀q = 1, . . . , l}. We

assume that φ i(xi) is Lipschitz and bounded at xi = 0, i.e.

‖φ i(y1)−φ i(y2)‖∞ ≤ Li‖y1− y2‖∞ (8.2)

‖φ i(0)‖∞ ≤Mi (8.3)

hold for any y1, y2 ∈ Rn in a compact set, and θ i(t) is differentiable with bounded
first derivative, i.e., there exists a positive constant dθ

i ∈ R+, such that

√
tr
(

θ̇ T
i (t)θ̇ i(t)

)
≤ dθ

i . (8.4)
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Remark 8.1. In this chapter, we use a simple form of the uncertainty with glob-
ally Lipschitz nonlinearity to illustrate the co-design idea. In fact, L1 adaptive con-
trollers can handle much more complex uncertainties and disturbances, including
unmodeled dynamics, unmatched uncertainties [10, 9]. An extension of the pro-
posed scheme for handling interconnected nonlinearities is reported in [23].

Since (Ai,Bi) is controllable, there exist positive definite matrices Pi,Qi ∈ Rn×n

and feedback gain Ki ∈ Rm×n such that

Pi(Ai +BiKi)+ (Ai + BiKi)
T Pi =−Qi. (8.5)

For notational convenience, we define

Am
i = Ai +BiKi, (8.6)

and A ∈RnN×nN , B ∈ RnN×mN , f : R+
0 ×RnN →RmN , respectively, by

A =




A1 · · · 0
...

. . .
...

0 · · · AN


 , B =




B1 · · · 0
...

. . .
...

0 · · · BN


 , f (t,x) =




θ 1(t)φ 1(x1)
...

θ N(t)φ N(xN)




(8.7)
Therefore, the state equation of the overall system can be written as:

ẋ(t) = Ax(t)+ B(u(t)+ f (t,x(t))) (8.8)

where x = (xT
1 ,xT

2 , · · · ,xT
N)T and u = (uT

1 ,uT
2 , · · · ,uT

N)T .
The ideal system dynamics for agent i are given by

ẋideal
i (t) = Aix

ideal
i (t)+ Bi

(
Kix

ideal
i (t)+ gi

(
xideal

i (t),{xideal
j (t)} j∈Ni

)
+ ri(t)

)

xideal
i (0) = x0

i , (8.9)

whereNi ⊆N is agent i’s neighboring set, gi : Rn×Rn|Ni|→Rm is a known control
strategy and ri : R+

0 → Rm is a known reference signal for agent i. The function gi

can be any control algorithm proposed for the “ideal” multi-agent systems (“ideal”
means continuous (perfect) communication and no uncertainty). A survey of these
algorithms can be found in [15].

Ideally, if we knew the function θ i(t), we could include−θ i(t)φ i(xi) in the con-
trol input to cancel the existing nonlinearity. Then we could design an appropriate
feedback strategy to fulfill the control objective. In that case, the ideal controller for
agent i would be

uideal
i (t) = Kix

ideal
i (t)+ gi

(
xideal

i (t),{xideal
j (t)} j∈Ni

)
+ ri(t)−θ i(t)φ i(x

ideal
i (t)).

(8.10)
We denote the overall ideal state and input by xideal = ((xideal

1 )T , · · · ,(xideal
N )T )T and

u = ((uideal
1 )T , · · · ,(uideal

N )T )T , respectively.
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The ideal controller, however, is not practical for two reasons. First θ i(t) is un-
known. Second, agent i cannot continuously receive its neighbors’ state information
due to the communication constraints. In practice, agent i can only continuously
detect its state xi(t) and discretely receive data packets broadcast by its neighbors
in Ni; furthermore, agent i can also broadcast its state information to its neighbors
in a discrete manner. The broadcast state of agent i is denoted by x̂i(t). Let ti[k] be
the time instant when agent i releases the kth broadcast. Then x̂i(t) is deemed to
be constant over the time interval [ti[k],ti[k + 1]), and the control input of agent i is
computed based on xi(t) and {x̂ j(t)} j∈Ni .

To address these issues, we develop a distributed, in contrast to centralized, L1

adaptive control scheme. We use event-triggering to define the broadcast release
time instant ti[k]. Agent i broadcasts its state information to its neighbors only when
a “local” event occurs. In other words, agent i broadcasts its states when it detects
occurrence of the event using only its local information. The event in this chapter
corresponds to certain local measurement error exceeding a prespecified threshold.
The local L1 adaptive controller compensates for the modeling uncertainties and
component failures. The objective is to ensure that the internal signals in the over-
all system in (8.1) can be rendered close to those in the ideal system in (8.9) via
appropriately adjusting the design parameters in a decoupled way.

To study the closeness between the real system and the ideal model, we need
to design feedback and communication schemes addressing issues raised by both
uncertainties and communication constraints. To decouple the design procedure, we
introduce an intermediate system called desired system as a bridge to establish the
relation between the real and ideal systems. The ith desired subsystem is defined by

ẋdes
i (t) = Aix

des
i (t)+ Bi(u

des
i (t)+ θ i(t)φ i(x

des
i (t)))

udes
i (t) = Kix

des
i (t)−θ i(t)φ i(x

des
i (t))+ χxi

i (t)

xdes
i (0) = x0

i , (8.11)

where xdes
i : R+

0 → Rn and udes
i : R+

0 → Rm are the state and the input of the ith
desired subsystem, respectively, and

χxi
i (t) , gi

(
xi(t),{x̂ j(t)} j∈Ni

)
+ ri(t). (8.12)

It takes two steps to show the closeness between the real and the ideal systems.
The first step is to show the closeness between the ith real subsystem and the ith
desired subsystem. This step is achieved by the design of the L1 adaptive controller,
which compensates for modeling uncertainties and external disturbances. The sec-
ond step considers the closeness between the desired system and the originally posed
ideal model, which mainly focuses on the communication constraints. The introduc-
tion of the desired system, achievable by the L1 adaptive controller, is the key step
in the decoupling between the design of the feedback strategy and the design of the
communication protocol.
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8.3 L1 Adaptive Control Structure

This section considers the first step for handling the uncertainties. We treat each
agent as an “independent” system and associate with it its desired subsystem, given
by (8.11). In this desired subsystem, χxi

i (t) plays the role of an external reference
input, which is dependent upon the state of agent i. The desired subsystem is used
only in analysis and not synthesis; therefore the dependence of χxi

i (t) upon xi is
not leading to circular arguments. The L1 adaptive controller is used to close the
feedback loop of agent i, given by Eq. (8.1). The L1 adaptive controller for agent i
has the following structure:

ui(t) = Kixi(t)+ vi(t), (8.13)

where Ki is the nominal feedback gain and vi : R+
0 → Rm is the adaptive feedback.

For the adaptive feedback, we first need to introduce the identifier:

ẋiden
i (t) = Am

i xiden
i (t)+ Bi(vi(t)+ θ̂ i(t)φ i(xi(t))), ẋiden

i (0) = x0
i ,

where xiden
i : R+

0 → Rn is the state of the identifier, and θ̂ i : R+
0 → Rm×l is updated

according to the adaptive law: For any p ∈ {1, . . . ,m} and q ∈ {1, . . . , l},

[ ˙̂θ i]pq(t) = ΓiProjbi
pq

(
[θ̂ i]pq(t),−[x̃T

i PiBi]p[φ i(xi)]q
)

(8.14)

θ̂ i(0) ∈ Ωi.

In Eq. (8.14), Γi ∈ R+ is the adaptation gain, and the operator Projbi
pq

: R×R→ R
is given by

Projbi
pq

(a,b) =

{
b−bh(a), if h(a) > 0 and bḣ(a) > 0

b, otherwise,
(8.15)

where h(a)=
a2−a2

max
εaa2

max
and amax =

bi
pq√

1+εa
with some εa ∈ (0,1). The Projbi

pq
operator

ensures that θ̂ i(t) remains in Ωi [19].
The adaptive signal vi is defined by

vi(s) =−Ci(s)η̂ i(s)+ χxi
i (s), (8.16)

where Ci(s) is an m×m diagonal matrix defined by Ci(s) = ci(s)Im×m; ci(s) is a
strictly proper, stable low-pass filter satisfying ci(0) = 1; and vi(s), η̂ i(s), χxi

i (s) are
the Laplace transforms of the signals vi(t), η̂ i(t) , θ̂ i(t)φ i(xi(t)), χxi

i (t), respec-
tively. The structure of the embedded L1 controller in subsystem i is shown in Fig.
8.1.

The results from [3] can be elaborated to prove that subject to a mild assumption
on χxi

i (t), the distance between the trajectories of agent i and its desired subsystem,
and also the corresponding control signals, can be uniformly bounded on arbitrary
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Fig. 8.1 L1 adaptive controller for subsystem i.

time interval [0,τ] for any τ > 0. The assumption imposed on χxi
i (t) in Lemma 8.1

will be verified later in the proof of Lemma 8.2.

Lemma 8.1. Consider the desired subsystem in equation (8.11) and the subsystem
in Eq. (8.1) with the controller in Eqs. (8.13)–(8.16). Assume that Eqs. (8.2), (8.3),
(8.4), (8.5) hold. If there exists a positive constant ρ χi

such that

‖χxi
i (t)‖∞ ≤ ρ χi

for any t ∈ [0,τ], and Ci(s) is chosen to verify

λ i , ‖Gi(s)‖L1 θmax
i Li < 1, (8.17)

where Li is defined in (8.2) and

Gi(s) , Hi(s)(I−Ci(s)) (8.18)

Hi(s) , (sI−Am
i )−1Bi (8.19)

θ max
i , max

θ i∈Ωi
‖θ i‖∞, (8.20)

then the following inequalities hold for any τ > 0:

‖xdes
i − xi‖L[0,τ]

∞
≤ ε i (8.21)

‖udes
i − ui‖L[0,τ]

∞
≤ δ i, (8.22)
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where ε i,δ i ∈ R+
0 are defined by

ε i ,
θ max

i Mi‖Gi(s)‖L1

1−λ i
+
‖Ci(s)‖L1

1−λ i

ψ i√
Γi

+
λ i

1−λ i
‖Hi(s)‖L1‖χ

xi
i ‖L[0,τ]

∞
(8.23)

δ i , (‖Ki‖∞ +‖Ci(s)‖L1θ max
i Li)ε i +

‖Ci(s)(co
i Hi(s))−1co

i ‖L1ψ i√
Γi

+‖Ci(s)− I‖L1θ max
i (Li‖Hi(s)‖L1‖χ

xi
i ‖L[0,τ]

∞
+ Mi) (8.24)

ψ i ,

√√√√√4 (θ max
i )

2
+ 4

σmax(Pi)

σmin(Qi)
dθ

i maxθ i∈Ωi

√
tr
(
θ T

i θ i
)

σ min(Pi)
(8.25)

and co
i ∈ Rm×n ensures that co

i Hi(s) has full rank, stable zeros, and relative degree
1.

Remark 8.2. According to Eq. (8.23), if we increase the cut-off frequency and the
value of the adaptation gain Γi, ε i will reduce to zero. However, notice that set-
ting Ci(s) = I, the L1 adaptive controller degenerates into model reference adaptive
controller (MRAC), yielding unbounded δ i, because the term Ci(s)(co

i Hi(s))−1co
i is

then improper [4].

8.4 Local Event Design

This section studies the impact of communication constraints on the closeness of the
real system and the ideal system. As mentioned in Sec. 8.2, we use event-triggering
to determine the broadcast time instants. It is, therefore, important to know how to
design these events. There are several requirements on the events. First, the event
for each agent should be detectable by that agent. Second, the event for an indi-
vidual agent should not continuously occur. Third, the events need to be designed
such that the resulting event-triggered system is close to the ideal system. In the fol-
lowing discussion, we design local events fulfilling these requirements and provide
performance bounds between the real and the ideal systems.

It is shown in Sec. 8.3 that the real system can be close to the desired system in
Eq. (8.11). So we just need to design the events such that the desired system is close
to the ideal system. Let g : RnN×RnN →RmN be defined by

g(x, x̂) =




g1(x1,{x̂ j} j∈N1)
...

gn(xN ,{x̂ j} j∈NN )


 (8.26)

According to Eqs. (8.9) and (8.11), the error dynamics between the desired system
and the overall ideal system is
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ẋdes(t)− ẋideal(t) = Am(xdes(t)− xideal(t))

+B(g(x(t), x̂(t))−g(xideal(t),xideal(t))) (8.27)

where xdes = ((xdes
1 )T , · · · ,(xdes

N )T )T , Am , diag{Am
1 , · · · ,Am

n } ∈ RnN×nN and B, g
are defined in equations (8.7) and (8.26), respectively. Let

H(s) , (sI−Am)−1B (8.28)

Then, Eq. (8.27) implies

‖xdes− xideal‖L[0,τ]
∞
≤ ‖H(s)‖L1‖g(x(t), x̂(t))− g(xideal(t),xideal(t))‖L[0,τ]

∞
(8.29)

for all τ > 0.
To obtain a bound on ‖xdes−xideal‖L∞ , we need to focus on g. Let us first define

two types of errors:

e(t) , x(t)− xdes(t) (8.30)

ê(t) , x(t)− x̂(t), (8.31)

where e : R+
0 → RnN is the difference between the real state and the state of the

desired system in equation (8.11), and ê : R+
0 → RnN is the difference between the

real state and the broadcast state. Notice that x(t) = xdes(t)+e(t) and x̂(t)= xdes(t)+
e(t)− ê(t).

Assumption 8.1. Assume that g is locally Lipschitz, i.e., there exist positive con-
stants a,b ∈ R+ such that

‖g(x,x− ê)−g(xideal,xideal)‖∞ ≤ a‖x− xideal‖∞ +b‖ê‖∞ (8.32)

hold for all x, ê,xideal in a compact set.

Subject to Assumption 8.1, we conclude from inequalities (8.29) and (8.32) that

‖xdes− xideal‖L[0,τ]
∞
≤ ‖H(s)‖L1

(
a‖xdes− xideal‖L[0,τ]

∞
+ a‖e‖L[0,τ]

∞
+b‖ê‖L[0,τ]

∞

)

Assume that

‖H(s)‖L1a < 1 (8.33)

Then, inequality (8.33) implies

‖xdes− xideal‖L[0,τ]
∞
≤ ‖H(s)‖L1

1−a‖H(s)‖L1

(
a‖e‖L[0,τ]

∞
+b‖ê‖L[0,τ]

∞

)
(8.34)

The preceding inequality indicates that the bound on ‖xdes− xideal‖L∞ depends on
the two types of errors ê and e, with ê generated due to limited communication
resource and e coming from the uncertainty. We need to find bounds on these two
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errors. Let us first take a look at ê. Arbitrarily choosing a positive constant ρ i ∈R+,
it is easy to see that if agent i uses the violation of the inequality

b‖xi(t)− xi(ti[k])‖∞ ≤ ρ i (8.35)

to determine the next broadcast release time ti[k + 1], then ‖xi(t)− xi(ti[k])‖∞ ≤
ρ i/b holds for all t ∈ [ti[k],ti[k+1]]. Notice that x̂i(t) = xi(ti[k]) for all t ∈ [ti[k],ti[k+
1]]. Therefore, for êi = xi− x̂i, we have

‖êi(t)‖∞ ≤
ρ i

b
(8.36)

for all t ∈ [ti[k],ti[k + 1]] and all k ∈ N , which implies that the preceding inequality
holds for all t ≥ 0. Therefore, ‖ê‖L∞ ≤ ρ i/b.

The bound on e is provided in Lemma 8.1. However, to apply Lemma 8.1, we
need to verify the assumption that χxi

i (t) is bounded. The following lemma helps us
to show this by providing bounds on ‖xideal‖L∞ and ‖x‖L∞ .

Lemma 8.2. Consider the system in equation (8.1) with the controller in equations
(8.13)–(8.16). Suppose that Assumption 8.1 and Eqs. (8.2), (8.3), (8.4), (8.5), (8.17),
(8.33) hold and ‖r‖L∞ is bounded. If for any i ∈N ,

λ i

1−λ i

a‖H(s)‖L1

1− a‖H(s)‖L1

< 1 (8.37)

holds, where λ i, a, H(s) are defined in equation (8.17), (8.32), (8.28), respectively,
and inequality (8.35) holds, then the following inequalities hold

‖xideal‖L∞ ≤ ξ 1 (8.38)

‖x‖L∞ ≤ ξ 2 (8.39)

for all t ≥ 0, where ξ 1,ξ 2 ∈ R+ are defined by

ξ 1 ,
‖H(s)‖L1(‖g(0,0)‖∞ +‖r‖L∞)+‖(sI−Am)−1x(0)‖L∞

1−a‖H(s)‖L1

(8.40)

ξ 2 ,
ξ 1+ζ+‖H(s)‖L1

(
maxi∈N ρ i−ξ 1a+maxi∈N

{
λ i

1−λ i

}
(maxi∈N ρ i+‖g(0,0)‖∞+‖r‖L∞)

)

1−maxi∈N

{
1

1−λ i

}
‖H(s)‖L1

a

(8.41)

ζ , max
i∈N

{
θ max

i Mi‖Gi(s)‖L1

1−λ i
+
‖Ci(s)‖L1

1−λ i

ψ i√
Γi

}
. (8.42)

Remark 8.3. Inequality (8.37) puts constraints on the low-pass filter and the ideal
system. It requires a‖H(s)‖L1 < 1, which ensures the boundedness of the ideal sys-
tem. It also requires λ i < 1, which is needed for the stability of L1 adaptive con-
troller. Note that λ i < 1 can be always satisfied by adjusting the bandwidth of the
low-pass filter Ci(s). Inequality (8.37) in fact places a small-gain condition on the
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system, which may be conservative. An alternative way is to use Lyapunov method
[21, 27] that may provide less conservative requirements on the low-pass filter band-
width and the ideal system, while still achieving the desired system performance.

Since ‖x‖L∞ ≤ ξ 2, we can easily obtain, by (8.12) and (8.32), that

‖χx‖L∞ ≤ aξ 2 +max
i∈N

ρ i + ‖g(0,0)‖∞ + ‖r‖L∞ , ρχ , (8.43)

where

χx = (χx1
1 , · · · ,χxN

N )T . (8.44)

With this bound on ‖χx‖L∞ , we are able to present the main result.

Theorem 8.1. Assume that the hypotheses in Lemma 8.2 hold. Then, the following
inequalities hold:

‖x− xideal‖L∞ ≤ ξ 3 (8.45)

‖u−uideal‖L∞ ≤ ξ 4, (8.46)

where ξ 3,ξ 4 ∈ R+ are defined by

ξ 3 ,

ζ +‖H(s)‖L1

(
max
i∈N

ρ i + max
i∈N

{
λ i

1−λ i

}
ρχ

)

1− a‖H(s)‖L1

(8.47)

ξ 4 , max
i∈N

δ i +

(
‖K‖∞ +max

i∈N
{θ max

i Li}
) ‖H(s)‖L1

1−a‖H(s)‖L1

(
amax

i∈N
ε i +max

i∈N
ρ i

)

+aξ 3 +max
i∈N

ρ i (8.48)

and ρχ , ε i,δ i,ζ ,ξ 2 ∈ R+ are defined in equations (8.43), (8.21), (8.22), (8.42) and
(8.41), respectively.

Remark 8.4. The inequality in (8.35) defines the time instants for event-triggering.
Each agent can use the violation of this inequality to trigger the broadcast. At the
time instant when the broadcast is released, ‖ei(t)‖∞ becomes zero and inequality
(8.35) is trivially satisfied. Then, agent i does not broadcast until the next time when
(8.35) is violated. Notice that this inequality is only related to each agent’s local
information, so it can be detected by agents locally.

Remark 8.5. The event-triggering literature is rich on defining various events. In
general, the event can be described by a logic rule, when a certain function of the
current and broadcast states/ouputs is equal to zero (for example, in our case it is
the function ‖xi(t)− x̂i(t)‖∞−ρ i/b). However, for different control purposes, such
functions might be different. In [21, 27], the threshold on the error is set as a func-
tion of the current and/or broadcast states to ensure asymptotic stability; in [5], the
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event is designed to enforce the system output to be less than a constant for limit
circles; in [28, 20, 12], such functions are derived to establish the optimality in esti-
mation. The event in this chapter is simple in its structure and can be directly related
to communication constraints, i.e., hardware specifications. With the L1 adaptive
controller, this definition of the event leads to uniform performance bounds for the
distributed system, the tuning of which can be related to hardware specifications and
pursued in decoupled way.

Remark 8.6. Note that when the cut-off frequency of Ci(s) increases, λ i reduces to
zero and ζ , ξ 2 decrease. Therefore, according to Eq. (8.45), by reducing the event
threshold ρ i and increasing the adaptation gain Γi as well as the cut-off frequency
of Ci(s), the bound on ‖x− xideal‖L∞ , given by ξ 3, can be arbitrarily close to zero.
Note that reducing ρ i will result in frequent communication, which requires a great
amount of communication resource. The performance bounds, therefore, can be di-
rectly related to the hardware specifications.

Theorem 8.1 provides uniform performance bounds for the signals in the closed-
loop system using the proposed event-triggering scheme. Next we derive the bounds
on the transmission periods generated by this scheme.

Corollary 8.1. Assume that the hypotheses in Theorem 8.1 hold. Then for any i∈N ,
there exists a positive constant Ti such that

ti[k + 1]− ti[k]≥ Ti. (8.49)

8.5 Simulations

Simulation results are presented in this section to illustrate the proposed co-design
scheme. We adopt the example from [2], where N agents move in a two-dimensional
plane. The control objective is to move agent i to a prespecified position, assuming
that agent i can only receive the broadcast state of the two other agents.

The ith agent’s dynamics are given as

ẍi = ux
i + θ x

i (t)φ i(Xi)

ÿi = uy
i + θ y

i (t)φ i(Xi),

where (xi, yi) is agent i’s relative position to its destination, Xi is the state of agent i
defined by

Xi =
(

xi ẋi yi ẏi

)T
, and θ x

i ,θ
y
i : R+

0 → R4

are time-varying uncertainties, satisfying
∣∣∣[θ S

i (t)]p

∣∣∣≤ 5 for any p = 1, . . . ,4 and

‖θ̇ S
i (t)‖1 ≤ 50,S ∈ {x,y}; and φ i(Xi) = (tanh(xi), tanh(ẋi), tanh(yi), tanh(ẏi))

T
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.

The ideal controller for agent i, U ideal
i , is

U ideal
i = KiX

ideal
i + ∑

j∈Ni

Ki jX
ideal
j −

(
θ x

i (t)
θ y

i (t)

)
φ i(X

ideal
i )

where the feedback gain

Ki =

(
−3.45 −4.34 0 0

0 0 −3.45 −4.34

)

Ki j =

(
0.16 0.16 0 0

0 0 0.16 0.16

)
, ∀ i and j 6= i

is obtained using the distributed linear quadratic regulator approach from [2]. The
initial state is randomly selected. In the simulations, we use ‖ê(t)‖∞ = 1 to trigger
the broadcast. For the embeddedL1 controller, we set Γi = 105, Ci(s) = (30/s+30) ·
I4×4. It is easy to verify that inequalities (8.17), (8.33) and (8.37) hold.
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We first set N = 4 and run the event-triggered adaptive control system for 5 sec-
onds. The results are plotted in Figs. 8.2–8.5. Figure 8.2 plots agents’ ideal motion
path and the actual path, which are almost identical. Figures 8.4 and 8.5 show the
difference of the overall states and control inputs in these two systems, respectively.
We compute the relative errors

‖X−X ideal‖∞
‖X ideal‖L∞

,
‖U−U ideal‖∞
‖U ideal‖L∞

of the difference in states and inputs, respectively. It shows that the errors in the
states and the inputs are less than 1.2% and 3% of the ‖Xideal‖L∞ and ‖Uideal‖L∞ ,
respectively. These errors can be further reduced by deceasing the thresholds in the
local events and increasing the local adaptation gain in each agent.

Figure 8.3 plots the broadcast periods of the agents that are defined by ti[k +
1]− ti[k]. It shows that the periods vary a lot. These results indicate that the com-
munication resource might be largely reduced by using event-triggering. Also note
that the broadcast periods are getting larger, as the states approach the equilibrium.
This is because the plant is linear time-invariant, and the threshold in the event is
a constant. In this case, when the state approaches its equilibrium, less information
is required to keep the state inside a small neighborhood of the equilibrium. More
detailed discussion on this relationship can be found in [1].

We then add transmission delays into the system to examine the robustness of
the scheme to the delays. The initial condition is the same as that in the first exper-
iment. The delay in each transmission is a random variable, uniformly distributed
over [0,0.3]. Simulation results are shown in Figs. 8.6 – 8.9. The difference in sig-
nals becomes a little larger compared with the nondelay case, but it is still acceptably
small. It implies that for this specific example, the scheme is robust to the transmis-
sion delays.

Finally, we vary the number of agents from 3 to 80 to examine the scalability of
this scheme. We compute the normalized L∞-norms of the errors in the states and
the inputs of two systems, defined by

‖X−X ideal‖L∞

‖X ideal‖L∞

and
‖U−U ideal‖L∞

‖U ideal‖L∞

respectively. Figures 8.10–8.11 plot the number of agents versus L∞ norm of the
error signals and shows that the errors between the states/inputs of these two systems
remain on the same level as the number of agents increases. It implies that in this
simulation, the gap between the real system and the ideal system scales well with
respect to the number of agents.
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8.6 Conclusions

This chapter presented an event-triggering and L1 adaptation co-design scheme that
can be used to predict the performance of networked control systems in the presence
of uncertainties and communication constraints. Performance bounds are derived on
the difference between the signals in the ideal system and the real system. These
bounds can be arbitrarily reduced by deceasing the thresholds in local events and
increasing the local adaptation gains, as well as the bandwidths of the embedded
low-pass filters. Simulation results show that this co-design scheme seems to be
robust to the transmission delays and scale well with the number of agents. Rigorous
proofs of these features, and also other features like quantization and delays, will be
reported in forthcoming publications.
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8.7 Proofs

8.7.1 Proof of Lemma 8.1

Proof. We first show the boundedness of x̃i = xiden
i − xi. From Eqs. (8.1) and (8.14),

we have

˙̃xi = Am
i x̃i + Biθ̃

T
i (t)φ i(xi) (8.50)

where θ̃ i(t) = θ̂ i(t)−θ i(t).

Consider V̇i with Vi(x̃i, θ̃ i) = x̃T
i Pix̃i +Γ −1

i tr(θ̃ T
i θ̃ i) and Pi defined in Eq. (8.5):

V̇i = 2x̃T
i Pi ˙̃xi +2Γ −1

i tr(θ̃ T
i

˙̃θ i)

=−x̃T
i Qix̃i + 2x̃T

i PiBiθ̃ i(t)φ i(xi)+ 2Γ −1
i tr

(
θ̃ T

i
˙̂θ i− θ̃T

i θ̇ i

)
.

Since the adaptive law from (8.14) implies

x̃T
i PiBiθ̃ i(t)φ i(xi)+Γ −1

i tr
(

θ̃ T
i

˙̂θ i

)
≤ 0

and θ i(t) ∈Ωi,

√
tr
(

θ̇ T
i (t)θ̇ i(t)

)
≤ dθ

i , we have

V̇i ≤−x̃T
i Qix̃i− 2Γ −1

i tr
(

θ̃ T
i θ̇ i

)

≤−x̃T
i Qix̃i− 2Γ −1

i

√
tr
(

θ̃ T
i θ̃ i

)√
tr
(

θ̇ T
i θ̇ i

)

≤−σmin(Qi)‖x̃i‖2
2 +4Γ −1

i dθ
i max

θ i∈Ωi

√
tr
(
θ T

i θ i
)
.
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Since V (0) = θ̃ T
i (0)Γ −1θ̃ i(0)≤ 4θmax

i
2Γ −1

i , the inequality above implies

‖x̃i(t)‖∞ ≤ ‖x̃i(t)‖2 ≤
ψ i√

Γi
, ∀t ≥ 0. (8.51)

We now consider the bound on ‖xdes
i − xi‖L[0,τ]

∞
. Let x̃des

i = xdes
i − xi. According to

equations (8.1) and (8.11), the error dynamics are

x̃des
i (s) = Hi(s)(−Ci(s)η̂ i(s)+ η i(s))

= Hi(s)(−Ci(s)η̂ i(s)+Ci(s)η i(s)−Ci(s)η i(s)+ η i(s))

= Hi(s)Ci(s)(η i(s)− η̂ i(s))+ Hi(s)(I−Ci(s))η i(s)

= Ci(s)Hi(s)(η i(s)− η̂ i(s))+ Hi(s)(I−Ci(s))η i(s),

where η i(s), η̂ i(s) are the Laplace transforms of θ i(t)φ i(xi) and θ̂ i(t)φ i(xi), re-
spectively. Therefore,

‖x̃des
i ‖L[0,τ]

∞
≤‖Ci(s)Hi(s)(η i(s)− η̂ i(s))‖L[0,τ]

∞
+ ‖Hi(s)(I−Ci(s))η i(s)‖L[0,τ]

∞

≤‖Ci(s)‖L1‖Hi(s)(η i(s)− η̂ i(s))‖L[0,τ]
∞

+ ‖Gi(s)‖L1‖η i(s)‖L[0,τ]
∞

(8.52)

From (8.50), we have

x̃i(s) = Hi(s)(η̂ i(s)−η i(s)). (8.53)

This implies

‖Hi(s)(η̂ i(s)−η i(s))‖L[0,τ]
∞
≤ ‖x̃i‖L[0,τ]

∞
≤ ψ i√

Γi
(8.54)

where the last inequality is obtained by using (8.51).
Consider ‖η i(s)‖L[0,τ]

∞
. From (8.2) and (8.3), we know

‖η i(s)‖L[0,τ ]
∞

= sup
0≤t<τ

‖θ i(t)φ i(xi(t))‖∞

≤ θ max
i (Li‖xi‖L[0,τ]

∞
+Mi)

≤ θ max
i (Li‖x̃des

i ‖L[0,τ]
∞

+ Li‖xdes
i ‖L[0,τ]

∞
+ Mi) (8.55)

Based on equation (8.11), we have

‖xdes
i ‖L[0,τ]

∞
≤ ‖Hi(s)‖L1‖χ

xi
i ‖L[0,τ]

∞
≤ ‖Hi(s)‖L1‖χ

xi
i ‖L[0,τ]

∞

Applying this inequality into (8.55) implies

‖η i(s)‖L[0,τ]
∞
≤ θ max

i (Li‖x̃des
i ‖L[0,τ]

∞
+Li‖Hi(s)‖L1‖χ

xi
i ‖L[0,τ]

∞
+ Mi) (8.56)

Combining inequalities (8.52), (8.54) and (8.56) yields
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‖x̃des
i ‖L[0,τ]

∞
≤ ‖Ci(s)‖L1 ψ i

(1−λ i)
√

Γi
+

λ i

1−λ i
‖Hi(s)‖L1‖χ

xi
i ‖L[0,τ]

∞
+
‖Gi(s)‖L1 θ max

i Mi

1−λ i
.

The bound on udes
i −ui can be obtained by studying (8.13) and (8.11):

udes
i (s)− ui(s) = Kixdes

i (s)−ηdes
i (s)−Kixi(s)+Ci(s)η̂ i(s)

= Kix̃des
i −ηdes

i (s)+Ci(s)ηdes
i (s)−Ci(s)ηdes

i (s)

+Ci(s)η i(s)−Ci(s)η i +Ci(s)η̂ i(s)

where ηdes
i (s) is the Laplace transform of θ i(t)φ i(x

des
i (t)). This inequality implies

‖udes
i (s)− ui(s)‖L[0,τ]

∞
(8.57)

≤ ‖Ki‖∞‖x̃des
i ‖L[0,τ]

∞
+ ‖Ci(s)ηdes

i (s)−ηdes
i (s)‖L[0,τ]

∞

+‖Ci(s)η i(s)−Ci(s)ηdes
i (s)‖L[0,τ]

∞
+‖Ci(s)η̂ i(s)−Ci(s)η i‖L[0,τ]

∞

≤ ‖Ki‖∞‖x̃des
i ‖L[0,τ]

∞
+ ‖Ci(s)− I‖L1θ max

i (Li‖Hi(s)‖L1‖χ
xi
i ‖L[0,τ]

∞
+ Mi)

+‖Ci(s)‖L1 θ max
i Li‖x̃des

i ‖L[0,τ]
∞

+ ‖Ci(s)η̂ i(s)−Ci(s)η i‖L[0,τ]
∞

.

To obtain the bound on ‖Ci(s)η̂ i(s)−Ci(s)η i‖L[0,τ]
∞

, consider (8.53). Since co
i Hi(s)

has full rank, we have

Ci(s)(co
i Hi(s))−1co

i x̃i(s) = Ci(s)(η̂ i(s)−η i(s)).

Because co
i Hi(s) has stable zeros and relative degree 1, the preceding inequality

implies

‖Ci(s)(η̂ i(s)−η i(s))‖L[0,τ]
∞
≤ ‖Ci(s)(co

i Hi(s))−1co
i ‖L1‖x̃i(s)‖L[0,τ]

∞

≤ ‖Ci(s)(co
i Hi(s))−1co

i ‖L1

ψ i√
Γi

.

Applying this bound into (8.57) yields (8.24). ⊓⊔

8.7.2 Proof of Lemma 8.2

Proof. We first show that ‖xideal‖L∞ is bounded. From equation (8.9), we have

‖xideal‖L[0,τ]
∞
≤ ‖H(s)‖L1(‖g(xideal,xideal)‖L[0,τ]

∞
+ ‖r‖L[0,τ]

∞
) (8.58)

+‖(sI−Am)−1x(0)‖L[0,τ]
∞

.

Notice that equation (8.32) implies
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‖g(xideal,xideal)‖L[0,τ]
∞
≤ a‖xideal‖L[0,τ]

∞
+ ‖g(0,0)‖∞. (8.59)

Applying this inequality into inequality (8.58), with the condition in (8.33), we have

‖xideal‖L[0,τ]
∞
≤
‖H(s)‖L1(‖g(0,0)‖∞ + ‖r‖L∞)+ ‖(sI−Am)−1x(0)‖L[0,τ]

∞

1− a‖H(s)‖L1

, ξ 1.

Next, we show that ‖x‖L∞ is bounded, using a contradiction argument. It is obvious
that ‖x(0)‖∞ ≤ ξ 2. Suppose that inequality (8.39) does not hold. Then there must
exist a time instant τ ≥ 0 and a positive constant ξ̄ > ξ 2 such that

‖x(τ)‖∞ = ξ̄ > ξ 2 (8.60)

‖x(t)‖∞ ≤ ξ̄ , ∀t ∈ [0,τ]. (8.61)

As the hypotheses in Lemma 8.1 are satisfied, we obtain

‖xi− xdes
i ‖L[0,τ]

∞
≤ ε i =

θ max
i Mi‖Gi(s)‖L1

1−λ i

+
‖Ci(s)‖L1

1−λ i

ψ i√
Γi

+
λ i

1−λ i
‖Hi(s)‖L1‖χ

xi
i ‖L[0,τ]

∞
(8.62)

for all i ∈N , which implies

‖e‖L[0,τ]
∞
≤ ζ +max

i∈N

{
λ i

1−λ i
‖Hi(s)‖L1‖χ

xi
i ‖L[0,τ]

∞

}

≤ ζ +max
i∈N

{
λ i

1−λ i

}
‖H(s)‖L1‖χx‖L[0,τ]

∞
(8.63)

and ζ , χx are defined in equations (8.42), (8.44), respectively.

Since Assumption 8.1 holds, we have inequality (8.33), which with inequality (8.33)
implies the satisfaction of inequality (8.34). Combining inequalities (8.34) and the
inequality above yields

‖x− xideal‖L[0,τ]
∞
≤ ‖x− xdes‖L[0,τ]

∞
+‖xdes− xideal‖L[0,τ]

∞

≤ ‖e‖L[0,τ]
∞

+
‖H(s)‖L1

1−a‖H(s)‖L1

(
a‖e‖L[0,τ]

∞
+b‖ê‖L[0,τ]

∞

)

≤ ‖H(s)‖L1

1− a‖H(s)‖L1

b‖ê‖L[0,τ]
∞

+
1

1−a‖H(s)‖L1

‖e‖L[0,τ]
∞

Applying inequalities (8.35) and (8.63) into the preceding inequality implies
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‖x− xideal‖L[0,τ]
∞
≤‖H(s)‖L1 maxi∈N ρ i

1− a‖H(s)‖L1

(8.64)

+
1

1−a‖H(s)‖L1

(ζ + max
i∈N

{
λ i

1−λ i

}
‖H(s)‖L1‖χx‖L[0,τ]

∞
)

Notice that

‖χx‖L[0,τ]
∞

= ‖g(x, x̂)+ r‖L[0,τ]
∞

≤ ‖g(x, x̂)−g(0,0)‖L[0,τ]
∞

+‖g(0,0)‖∞ +‖r‖L[0,τ]
∞

≤ a‖x‖L[0,τ]
∞

+ b‖ê‖L[0,τ]
∞

+‖g(0,0)‖∞ +‖r‖L[0,τ]
∞

≤ a‖x‖L[0,τ]
∞

+ max
i∈N

ρ i +‖g(0,0)‖∞ +‖r‖L[0,τ]
∞

,

where the last inequality comes from inequality (8.32).
Applying the preceding inequality into inequality (8.64) yields

‖x‖L[0,τ]
∞
≤ ξ 2, (8.65)

which contradicts equation (8.60). Therefore ‖x‖L∞ ≤ ξ 2 holds. ⊓⊔

8.7.3 Proof of Theorem 8.1

Proof. We first consider the bound on ‖x− xideal‖L∞ . Since the inequality

‖x− xideal‖L[0,τ]
∞
≤ ‖x− xdes‖L[0,τ]

∞
+‖xdes− xideal‖L[0,τ]

∞
(8.66)

holds, the bound on ‖x− xideal‖L∞ can be easily obtained by applying inequalities
(8.21), (8.34) and (8.43) into the preceding inequality.

We now consider the bound on ‖u−uideal‖L∞ . By equations (8.9) and (8.11), we
have

udes(t)−uideal(t) = K(xdes(t)− xideal(t))+ f (t,xdes(t))− f (t,xideal(t))

+g(x(t), x̂(t))− g(xideal(t),xideal(t)),

which together with inequalities (8.2), (8.32) implies

‖udes−uideal‖L[0,τ]
∞
≤ ‖K‖∞‖xdes− xideal‖L[0,τ]

∞
+max

i∈N
{θ max

i Li}‖xdes− xideal‖L[0,τ]
∞

+a‖x− xideal‖L[0,τ]
∞

+b‖ê‖L[0,τ]
∞

.

Applying inequalities (8.34), (8.35), and (8.45) into the preceding inequality yields
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‖udes−uideal‖L[0,τ]
∞
≤ (‖K‖∞ +maxi∈N {θ max

i Li})
‖H(s)‖L1

(
a‖e‖

L
[0,τ]
∞

+maxi∈N ρi

)

1−a‖H(s)‖L1

+aξ 3 + max
i∈N

ρ i.

Since the hypotheses in Lemma 8.1 are satisfied, inequalities (8.21) and (8.22) hold.
We therefore have

‖u− uideal‖L[0,τ]
∞
≤ ‖u−udes‖L[0,τ]

∞
+‖udes− uideal‖L[0,τ]

∞
≤ ξ 4.

⊓⊔

8.7.4 Proof of Corollary 8.1

Proof. Since the hypotheses in Theorem 8.1 hold, we have ‖u−uideal‖L∞ ≤ ξ 4. By
equation (8.10), ‖uideal‖L∞ is bounded and therefore ‖u‖L∞ is also bounded, i.e.,
there exists a positive constant ρu such that ‖u‖L∞ ≤ ρu. Also note that by Lemma
8.2, ‖x‖L∞ ≤ ξ 2.

Consider d
dt ‖xi(t)− xi(ti[k])‖2 for t ≥ ti[k].

ρk
i =

d
dt
‖xi(t)− xi(ti[k])‖2 ≤ ‖ẋi(t)‖2

≤ ‖Aixi(t)+ Bi(ui(t)+ θ i(t)φ i(xi(t)))‖2

≤ ‖Ai‖2‖xi(t)‖2 +‖Bi‖2‖ui(t)‖2 +‖Bi‖2‖θ i(t)‖2‖φ i(xi)‖2

≤ ‖Ai‖2n‖xi(t)‖∞ +‖Bi‖2m‖ui(t)‖∞ +‖Bi‖2 max
θ i∈Ωi

‖θ i‖2l‖φ i(xi)‖∞

≤ ‖Ai‖2nξ 2 +‖Bi‖2mρu +‖Bi‖2 max
θ i∈Ωi

‖θ i‖2l(Liξ 2 + Mi) = ρ ẋi

Solving this differential inequality with the initial condition, ‖xi(ti[k])−xi(ti[k])‖2 =
0, implies for any t ≥ ti[k],

‖xi(t)− xi(ti[k])‖∞ ≤ ‖xi(t)− xi(ti[k])‖2 ≤ ρ ẋi
(t− ti[k]).

Since ti[k +1] is the time instant when

‖xi(ti[k +1])− xi(ti[k])‖∞ =
ρ i

b

holds, we have

ρ i

b
= ‖xi(ti[k +1])− xi(ti[k])‖∞ ≤ ρ ẋi

(ti[k +1]− ti[k]),

which means
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ti[k +1]− ti[k] ≥
ρ i

bρ ẋi

= Ti.

⊓⊔

Acknowledgements This research was supported by AFOSR under Contract No. FA9550-09-1-
0265.

References

1. Anta, A., Tabuada, P.: Self-triggered stabilization of homogeneous control systems. In:
Proc.American Control Conference (ACC2008), pp. 4129–4134. Seattle, WA (2008)

2. Borrelli, F., Keviczky, T.: Distributed LQR design for identical dynamically decoupled sys-
tems. IEEE Trans. Automatic Control 53(8), 1901–1912 (2008)

3. Cao, C., Hovakimyan, N.: Design and analysis of a novelL1 adaptive control architecture with
guaranteed transient performance. IEEE Trans. Automatic Control 53(2), 586–590 (2008)

4. Cao, C., Hovakimyan, N.: Stability margin of l1 adaptive control architecture. IEEE Trans.
Automatic Control 55(2), 480–487 (2010)
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Chapter 9
Weight Determination by Manifold
Regularization

Henrik Ohlsson and Lennart Ljung

Abstract A new type of linear kernel smoother is derived and studied. The
smoother, referred to as weight determination by manifold regularization, is the so-
lution to a regularized least squares problem. The regularization avoids overfitting
and can be used to express prior knowledge of an underlying smooth function. An
interesting property of the kernel smoother is that it is well suited for systems gov-
erned by the semi-supervised smoothness assumption. Several examples are given
to illustrate this property. We also discuss why these type of techniques can have a
potential interest for the system identification community.

9.1 Introduction

A central problem in many scientific areas is linking certain observations to each
other and building models for how they relate. In loose terms, the problem could be
described as relating y to ϕ in

y = f0(ϕ) (9.1)

where ϕ is a vector of observed variables, a regressor vector, and y is a characteristic
of interest, an output. In system identification ϕ could be observed past behavior of
a dynamical system and y the predicted next output.

Observations are often imperfect or noisy, and we are therefore led to consider
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y = f0(ϕ)+ e, e∼N (0,σ2). (9.2)

Assume now that a set of observations, {(ϕt ,yt)}Ne
t=1, of how f0 transforms ϕ is

available. f0 :Rnϕ →R is itself unknown. The conventional approach within sys-
tem identification is to make use of a parametric expression f (ϕt ,θ ), which is we
hope is flexible enough to imitate the transformation f0. f (ϕ t ,θ ) is adjusted to the
observations by choosing θ as

θ̂ = argmin
θ

Ne

∑
t=1

l(yt − f (ϕt ,θ )). (9.3)

l : R → R is here a measure of how well the model predicts the estimation data
{(ϕt ,yt)}Ne

t=1 e.g.—l being chosen as a norm.
There are a number of parametric expressions and of varying flexibility, and to

choose a model structure just flexible enough is crucial when Eq. (9.3) is used. Let
e.g.

f (ϕ ,θ ) = θ (9.4)

and l(·) = (·)2 in (9.3). θ̂ and f (ϕ , θ̂ ) then become the mean of the observed outputs
∑Ne

t=1 yt/Ne. This model has of course very good predictive abilities if f0 is constant
but has otherwise rather limited abilities to produce satisfying predictions.

The other extreme, and of particular interest in this chapter, would be to use a
parameter for each of the ϕt we will work with. Let D denote that set of regressors.
D is typically larger than the set of regressors in the estimation set. (If nothing else,
we have occasion to compute the response value f0(ϕ) at new points). Let Θ be a
parameter vector of the same size as the number of elements in D:

card(D) = dimΘ (9.5)

We can then associate each parameter value in Θ with a response value f0(ϕt) for
any ϕt ∈ D: for convenience denote the elements of Θ by ft . This particular model
hence takes the form

f (ϕt ,Θ) = ft , ∀ϕt ∈ D. (9.6)

Remark 9.1 (Nonparametric Model). Somewhat misleading, a model for which the
number of parameters grows with the number of estimation data is called a non-
parametric model. The model given in (9.6) is hence a nonparametric model.

9.2 Supervised, Semi-Supervised and Unsupervised Learning

Before continuing it is useful to introduce the notions of supervised, semi-supervised
and unsupervised learning.

The term supervised learning is used for algorithms for which the construction
of f (ϕ , θ̂ ) is “supervised” by the measured information in y. In contrast to this, un-
supervised learning has only the information of the regressors {ϕt ,t = 1, . . . ,Ne}. In
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unsupervised classification, e.g. [10], the classes are constructed by various cluster-
ing techniques. Manifold learning, e.g. [26, 25] deals with unsupervised techniques
to construct a manifold in the regressor space that houses the observed regressors.

Semi-supervised algorithms are less common. In semi-supervised algorithms,
both (y,ϕ)-pairs and ϕs, for which no output has been observed, are used to con-
struct the model f (ϕ ,θ). This is particularly interesting if extra effort is required
to obtain y. Thus, costly (y,ϕ)-pairs are supported by less costly regressors to im-
prove the result. It is clear that unsupervised and semi-supervised algorithms are of
interest only if the regressors have a pattern that is unknown a priori.

Semi-supervised learning is an active area within classification and machine
learning (see [4, 33] and references therein). The main reason that semi-supervised
algorithms are not often seen in regression and system identification may be that it
is less clear when regressors alone can be of use. We will try to bring some clarity to
this through this chapter. Generally, it could be said that regression problems having
regressors constrained to rather limited regions in the regressor space may be suit-
able for a semi-supervised regression algorithm. It is also important that regressors
be available and comparably “cheap” to get as opposed to the (y,ϕ)-pairs.

9.3 Cross Validation and Regularization

Let us now return to the model given in (9.6). If we let l(·) = (·)2 again and D =
{ϕ1, . . . ,ϕNe

}, the criterion of fit (9.3) now takes the form

Θ̂ = ( f̂1, f̂2, . . . , f̂Ne ) = arg min
f1, f2,..., fNe

Ne

∑
t=1

(yt − ft)
2 = (y1,y2, . . . ,yNe) (9.7)

f (ϕ t ,Θ̂ ) hence “succeeds” to perfectly fit the estimation data. If there were no mea-
surement noise polluting the observations, this would be good. However, with mea-
surement noise present, obtaining a perfect fit is not desirable and termed overfitting.
Overfitting is a problem for very flexible models and to chose a model structure just
flexible enough to imitate f0 (and not flexible enough to being able to imitate the
noise) would be ideal.

There are a number of approaches to discovering what is “just flexible enough.”
Most approaches can be seen belonging to either cross validation or regularization.

In cross validation, a new data set {(ϕt ,yt)}Nv
t=1 is utilized to avoid overfitting.

The data set
{(ϕt ,yt)}Nv

t=1

is denoted the validation data set. Since measurement noise e of the validation data
set is impossible to predict, the best scenario possible would be perfectly predicting
the outcome of the deterministic part of (9.2) i.e., f0(ϕ). Therefore, for a number of
candidate structures fi(ϕ, θ̂ i), i = 1, . . . ,m (θ̂ found using (9.3)), a model is chosen
by
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arg min
fi(ϕ ,θ̂ i),i=1,...,m

Nv

∑
t=1

l(yt − fi(ϕt , θ̂ i)). (9.8)

To evaluate (9.8) we need to compute predictions for f0 at regressors not included in
the estimation data set i.e., fi(ϕt , θ̂ i), t = 1, . . . ,Nv. For the model f (ϕ t ,θ) = θ , see
(9.4), this is straightforward. f (ϕt , θ̂ ), t = 1, . . . ,Nv are simply equal to ∑Ne

t=1 yt/Ne.
For the model given in (9.6), however, it is not trivial and we will discuss this in the
next section.

In regularization, a cost on flexibility is added to the criterion of fit. f (ϕ t ,θ ) is
now adjusted to the observations by choosing θ as

θ̂ = argmin
θ

Ne

∑
t=1

l(yt − f (ϕt ,θ ))+λJ(θ ,ϕt) (9.9)

rather than using (9.3). J(θ ,ϕt) serves as a cost on flexibility and is often used
to penalize nonsmooth estimates. λ is seen as a design parameter and regulates
the trade-off between fit to the estimation data and smoothness. Choosing the “just
flexible enough” model structure is now transformed to choosing the right λ value.

For the model proposed in (9.6), a suitable regularizer is

J(Θ ,ϕt) =
Ne

∑
t=1

(
ft −

Ne

∑
s=1

k(ϕt ,ϕs) fs

∑Ne
r=1 k(ϕt ,ϕr)

)2

(9.10)

k : Rnϕ ×Rnϕ → R is a kernel. The regularizer (9.10) makes sure that close-by
regressors are transformed in a similar way by f (ϕ ,Θ) and therefore reassures
smoothness. This remedies the overfitting problem that (9.6) was previously suf-
fering from.

There are a number of different kernels that could be of interest to use in (9.10).
Some of the most interesting kernels are the squared exponential, KNN and LLE
kernels. The details of these kernels are outlined in Appendix 9.10.

9.4 Generalization

For most practical purposes it is not enough to find a model f (ϕ ,θ) that well imi-
tates f0 at {(ϕt ,yt)}Ne

t=1. Generalization to nonobserved data is often of more impor-
tance. This is denoted the model’s ability to generalize to unseen data.

Let ϕ∗ be an unseen regressor, i.e.ϕ∗ 6= ϕt ,t = 1, . . . ,Ne,. For the simple model
(9.4),

f (ϕ , θ̂) =
Ne

∑
t=1

yt/Ne (9.11)

generalization is trivial since the prediction does not depend on the regressor. The
estimate for f (ϕ∗), ϕ∗ 6= ϕt , t = 1, . . . ,Ne, is simply taken as ∑Ne

t=1 yt/Ne.
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For the model (9.6),

f (ϕ t ,Θ̂) = f̂t , t = 1, . . . ,Ne (9.12)

with

Θ̂ = arg min
f1, f2,..., fNe

Ne

∑
t=1

(yt − ft)
2 + λ

Ne

∑
t=1

(
ft −

Ne

∑
s=1

k(ϕt ,ϕs) fs

∑Ne
r=1 k(ϕt ,ϕr)

)2

(9.13)

generalization is a bit more involved. The most natural way is to introduce a new
parameter f∗ for the estimate of f0(ϕ∗) and let the smoothness implied by the reg-
ularization give an estimate

f (ϕ∗,Θ̂) = f̂∗ (9.14)

with

Θ̂ = arg min
f1, f2,..., fNe , f∗

Ne

∑
t=1

(yt− ft)2 +λ ∑
ϕt∈D

(
ft − ∑

ϕs∈D

k(ϕ t ,ϕ s) fs

∑ϕr∈D k(ϕt ,ϕr)

)2

. (9.15)

D now contains both the estimation data and ϕ∗, i.e.D = {ϕ1,ϕ2, . . . ,ϕNe
,ϕ∗}.

Since Eq. (9.15) is quadratic in the optimization variables, an explicit solution can
be computed. Introduce first the notation

J ,[INe×Ne 0Ne×1], y , [y1 y2 . . .yNe ]
T ,

f̂ ,[ f̂1 f̂2 . . . f̂Ne f̂∗]T , k̄(ϕt ,ϕ s) ,
k(ϕt ,ϕs)

∑ϕ r∈D k(ϕ t ,ϕr)
,

K ,




k̄(ϕ1,ϕ1) k̄(ϕ1,ϕ2) . . . k̄(ϕ1,ϕNe
) k̄(ϕ1,ϕ∗)

k̄(ϕ2,ϕ1) k̄(ϕ2,ϕ2) k̄(ϕ2,ϕNe
) k̄(ϕ2,ϕ∗)

...
. . .

...

k̄(ϕNe
,ϕ1) k̄(ϕNe

,ϕ2) . . . k̄(ϕNe
,ϕNe

) k̄(ϕNe
,ϕ∗)

k̄(ϕ∗,ϕ1) k̄(ϕ∗,ϕ2) . . . k̄(ϕ∗,ϕNe
) k̄(ϕ∗,ϕ∗)




Equation (9.15) can then be written as

(y−Jf̂)T (y− Jf̂)+ λ(f̂−Kf̂)T (f̂−Kf̂) (9.16)

which expands into

f̂T (λ (I−K)T (I−K)+ JT J
)

f̂−2f̂T JT y+yT y (9.17)

Setting the derivative with respect to f̂ to zero and solving gives

f̂∗ = e∗
(
λ (I−K)T (I−K)+ JT J

)−1
JT y, e∗ , [01×Ne1] (9.18)
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It is straightforward to do the generalization for more than one unobserved regressor
at a time. D used in (9.15) then indexes all regressors, the Ne estimation regressors
and the regressors for which we seek an estimate of the function value but have not
observed the output. We will refer to the method outlined in (9.18) to as weight de-
termination by manifold regularization (WDMR [20], see also [17, 18]). The reason
for the name will become clear later.

Proposition 9.1 (Linear Kernel Smoother). The estimate given in (9.18) can be
rewritten in the form

f (ϕ∗,Θ̂) =
Ne

∑
t=1

wt yt (9.19)

and is therefore a linear estimator, since it is linear in the estimation outputs. The es-
timate given in (9.18) is also a kernel smoother since it is constructed using kernels.
These two combined make WDMR a linear kernel smother (see, e.g.,[8], p. 129).
For WDMR wt is given by

wt = e∗
(
λ (I−K)T (I−K)+ JT J

)−1
JT eT

t (9.20)

with et = [01×t−1 1 01×Ne−t ]. The expression for constructing the weights w in
(9.19) is referred to as the equivalent kernel in literature (see, e.g., [8] p. 170).

Notice that the resulting estimates coming from estimating the function-value
of unobserved regressors one-by-one and all at the same time will not be the same.
This is a property of semi-supervised regression approaches. The regularization will
make sure that the estimated ft varies smoothly on regressor-dense regions. We will
return to this property later and discuss when it can be useful.

9.5 WDMR and the Nadaraya–Watson Smoother

In the linear kernel smoother WDMR the kernel was used to provide a smoothness
prior. A kernel can also be used to obtain an estimate for f0(ϕ∗), via

f (ϕ∗) =
Ne

∑
t=1

k(ϕ∗,ϕt)yt

∑Ne
r=1 k(ϕ∗,ϕ r)

(9.21)

which also is a linear kernel smoother. This is referred to as the Nadaraya–Watson
smoother or estimator [13, 29]. It may seem a bit overcomplicated to, as in WDMR,
use a kernel as, for example, smoothness prior, but in the end we nevertheless end
up with a linear kernel smoother. What is achieved by using a kernel in WDMR
compared to using the kernel direct in the Nadaraya–Watson smoother as in Eq.
(9.21)?

Remark 9.2. Note that the Nadaraya–Watson smoother weights are used together
with noisy observations {yt}Ne

t=1 to obtain an estimate f (ϕ∗). To reduce the influence
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of noise, yt in (9.21) could itself be replaced by an estimate of f0(ϕt) by using (9.21)
a second time, i.e.,

f (ϕ t) =
1

∑Ne
r=1 k(ϕt ,ϕ r)+ k(ϕt ,ϕ∗)

( Ne

∑
s=1

k(ϕt ,ϕ s)ys + k(ϕt ,ϕ∗) f (ϕ∗)
)

(9.22)

If all noisy observations are replaced, we obtain the system of equations

f (ϕ t) = ∑
ϕs∈D

k(ϕ t ,ϕs) f (ϕ s)

∑ϕr∈D k(ϕt ,ϕ r)
, ∀ϕt ∈ D, D = {ϕ1,ϕ2, . . . ,ϕNe

,ϕ∗} (9.23)

which takes a familiar form (see the regularization in (9.15)). The regularization
in WDMR represents that we wish to obtain an estimate satisfying this system of
equations.

Remark 9.3. The resulting estimates coming from estimating the function value at
unobserved regressors one-by-one and all at the same time will not be the same
for WDMR. This is a property of semi-supervised regression approaches. The reg-
ularization will make sure that the estimated fts vary smoothly on regressor-dense
regions. The Nadaraya–Watson smoother is not a semi-supervised approach, and
estimating one function-value at a time or all at the same time would give the same
result.

To start to examine the advantages and disadvantages of WDMR compared to
the Nadaraya–Watson smoother, let us look at an example.

Example 9.1. Nadaraya-Watson Smoother versus WDMR
Let us now consider a standard test example from [14], “the Narendra-Li exam-

ple”:

xt+1 =

(
xt

1 + x2
t

+ 1

)
sin(zt) (9.24a)

zt+1 =zt cos(zt)+ xt exp

(
−x2

t + z2
t

8

)
+

u3
t

1+ u2
t +0.5cos(xt + zt)

(9.24b)

yt =
xt

1 +0.5sin(zt)
+

zt

1 +0.5sin(xt)
+ et (9.24c)

This dynamical system was simulated with 2000 samples using a random binary
input, giving input-output data {yt ,ut ,t = 1, . . . ,2000}. A separate set of 200 valida-
tion data was also generated with a sinusoidal input. To get an idea of the complexity
of the system, see Fig. 9.1, which shows these validation data. were also generated
with a sinusoidal input. The chosen regression vector was

ϕt =
[
yt−1 yt−2 yt−3 ut−1 ut−2 ut−3

]T
(9.25)

Let us use the squared exponential kernel (see Appendix 9.10) and apply the
Nadaraya–Watson smoother and WDMR (λ = 0.0001 was used in (9.20)) to es-
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Fig. 9.1 Validation data for the Narendra-Li example.

timate the function values at the validation regressors. The result is given in Ta-
ble 9.1. A length scale (see Appendix 9.10 for the definition of length scale) of 0.6
and 0.7 gave the best performing Nadaraya–Watson smoother and WDMR, respec-
tively. The table also give the fit for a neural network (a single layer sigmoid network
with 23 units in the System Identification Toolbox [11] gave the best performance)
and the prediction given by guessing that the next f0 value will equal the previous
observation.

The direct usage of the squared exponential kernel in the Nadaraya–Watson
smoother does very well compared to the neural network and guessing that the
next f0 value will be equal the previous observation. However, WDMR does even
better. As mentioned earlier (see Remark 9.2), WDMR has a hierarchical scheme
for denoising the observations. One may therefore wonder if enlarging the band-
width/length scale in the Nadaraya–Watson smoother would have the same denois-
ing effect. Figure 9.2 shows that doing so is not that easy and that enlarging the
bandwidth/length scale in fact does not help the Nadaraya–Watson smoother. It is
also interesting to examine what happens if the measurement noise changes. Ta-
ble 9.2 shows the result of an experiment where the noise level was decreased in
three steps. We see that as noise level decreased, the difference in performance be-
tween the Nadaraya-Watson smoother and WDMR disappeared.

So far we have only applied WDMR to a batch of data. We claimed earlier that
applying WDMR to a batch of data is not the same as applying it to the regres-
sors one-by-one. Unfortunately, the advantage seen for the batch tends to disappear
when the latter is done. WDMR and the Nadaraya–Watson smoother then perform
similarly. There are many possible reasons for this. One is that in the batch setting,
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Fig. 9.2 wi of (9.20) (thin black line) plotted as a function of |ϕ t − ϕ∗|, t = 1 . . . ,Ne and ϕ∗

being one of the validation regressors. The thick grey line shows the corresponding weights of the
Nadaraya–Watson smoother.

Table 9.1 Mean fit over 20 noise and input realization data for the Nadaraya-Watson smoother and
WDMR using a squared exponential kernel, a neural network and the estimate obtained by simply
taking the previous output as an estimate for the next function value.

Algorithm Mean fit (%)

Nadaraya-Watson (squared exponential, l = 0.6) 68

WDMR (squared exponential, l = 0.7, λ = 10−4) 71

Neural network (23 units) 66

Last measurement 47

Table 9.2 The Nadaraya–Watson (NW) smoother and WDMR’s performance for three different
noise levels. Both algorithms used a squared exponential kernel and were tuned for each of the
noise levels for optimal performance.

Algorithm
Fit

(σ2 = 0.5)

Fit
(σ 2 = 0.1)

Fit
(σ 2 = 0.05)

Fit
(σ 2 = 0.01)

Nadaraya–Watson 56 69 72 74

( l = 0.8,0.6,0.6,0.5 )

WDMR 60 71 73 74

( l = 0.8,0.7,0.7,0.7,

λ = 10−4,10−4,

0.8 · 10−4,0.5 ·10−4 )
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the regularization in WDMR ensures that the estimate varies smoothly over regions
of regressors. So-called boundary effects have however been observed. This means
that the estimates for regressors at the end of dense regions often are worse than es-
timates for regressors surrounded by many other regressors. Boundary effects are a
known issue of kernel smoothers, see e.g.[8, p. 168]. This supports that batch would
do better than one-by-one. Unfortunately, this means that WDMR is less interesting
for other than batch and nonlinear finite impulse response (FIR) models. In the next
section, we will only discuss a batch approach.

9.6 The Semi-Supervised Smoothness Assumption

WDMR does not only have good denoising properties, it can also provide desir-
able properties when it comes to problems of regressors confined to limited regions
e.g.manifolds, in the regressor space. Let us illustrate this by a pictorial example.

Consider the five regressors shown on the left of Fig. 9.3. For four of the re-
gressors the output has been observed and their outputs written next to them. One
regressor output is unknown. To estimate the function value at that regressor, we
could use the Nadaraya–Watson smoother and compute the average of the two clos-
est regressors’ outputs, which would give an estimate of 2.5. Let us now add the
information that the regressors and the outputs were sampled from a continuous-
time process and that the value of the regressor was evolving along the curve shown
on the right of Fig. 9.3. Knowing this, a better estimate of the function value would
probably be 1. Knowing that the regressors are restricted to a certain region in the
regressor space can hence make us reconsider our estimation strategy.

In regression we are interested in finding estimates for the conditional distribu-
tion p( f |ϕ). For the regressors without observed output to be useful, it is required
that the regressor distribution p(ϕ) bring information concerning the conditional

2

?

0

34

2

?

0

34

Fig. 9.3 Illustration of the information value of regressor manifolds: The left side shows five re-
gressors, four with measured outputs and one with unknown output marked by ’?’. If these regres-
sors have no known underlying structure or ordering, one would interpolate the unknown output
from its neighbors to 2.5 or so. On the other hand, if a one-dimensional manifold can be associated
with the regressors along the indicated line on the right hand side, the regressors have a certain
ordering. Then it is natural to interpolate the unknown value from its new neighbors to 1.
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p( f |ϕ). We saw from the pictorial example that one situation for which this is the
case is that in which we make the assumption that the sought function value changes
continuously along high-density areas in the regressor space. This assumption is re-
ferred to as the semi-supervised smoothness assumption [4]:

Assumption 9.1 (Semi-Supervised Smoothness). If two regressors ϕ1, ϕ2 in a
high-density region are close, then f0(ϕ1) and f0(ϕ2) should be closed.

“High density region” is a somewhat loose term: In many cases it corresponds
to a manifold in the regressor space, such that the regressors for the application in
question are confined to this manifold. That two regressors are “close” then means
that the distance between them along the manifold (the geodesic distance) is small.

In classification, this smoothness assumption is interpreted as meaning the class
labels should be the same in the high density regions. In regression, we interpret
this as a slowly varying function along high density regions. Note that in regression,
it is common to assume that the function value varies smoothly in the regressor
space; the semi-supervised smoothness assumption is less conservative since it only
assumes smoothness in the high density regions in the regressor space. Two regres-
sors could be close in the regressor space metric, but far apart along the high-density
region (the manifold): think of the region being a spiral in the regressor space.

One may discuss how common it is in system identification that the regressors
are constrained to a manifold. The input signal part of the regression vector should
according to identification theory be “persistently exciting,” which is precisely the
opposite of being constrained. However, in many biological applications and in DAE
(differential algebraic equation) modeling such structural constraints are frequently
occurring.

9.6.1 A Comparison between the Nadaraya-Watson Smoother and
WDMR Using the KNN Kernel

To illustrate the advantage of WDMR under the semi-supervised smoothness as-
sumption, we continue to discuss the previous pictorial example. We now add 5
regressors with unobserved output to the 5 previously considered. Hence, we have
10 regressors, 4 with observed outputs and 6 with unobserved outputs, and we de-
sire an estimate of the output marked with a question mark in Fig. 9.4. The left of
Fig. 9.4 shows how the Nadaraya–Watson smoother solves the estimation problem
if the KNN kernel (see Appendix 9.10) is used. The kernel will cause the searched
function value to be similar to the observed outputs of the K closest regressors. On
the right of Fig. 9.4, WDMR with the KNN kernel is used. This kernel grants es-
timates of the K closest regressors (observed or unobserved output) to be similar.
Since the regressors closest to the regressor for which we search the function value,
are unobserved, information is propagated from the observed regressors towards the
one for which we search a function value estimate along the chain of unobserved
regressors. The shaded regions in both the left and right part of the figure symbol-
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Fig. 9.4 An illustration of the difference of using the Nadaraya-Watson smoother (left part of the
figure) and WDMR (right part of the figure) with the KNN kernel.

ize the way information is propagated using the Nadaraya–Watson smoother and
WDMR. In the left part of the figure we will therefore obtain an estimate equal to
2.5 while in the right we get an estimate equal to 1.

The ability of WDMR to account for manifolds in the regressor space and the
semi-supervised smoothness assumption is a rather unique property of a kernel
smoother and the reason it is called “weight determination by manifold regular-
ization.”

9.7 Related Approaches

Semi-supervised learning has been around since the 1970s (some earlier attempts
exist). Fisher’s linear discriminant rule was then discussed under the assumption
that each of the class conditional densities was Gaussian. Expectation maximization
was applied using both regressor output pairs and regressors to find the parameters
of the Gaussian densities [9]. During the 1990s, interest in semi-supervised learning
increased, mainly due to its application to text classification, see e.g. [16]. The first
usage of the term semi-supervised learning, as it is used today, was not until 1992
[12].

The boost in the area of manifold learning in the 1990s brought with it a
number of semi-supervised methods. Semi-supervised manifold learning is a type
of semi-supervised learning used for nonlinear dimensionality reduction. Most
of the algorithms are extensions of unsupervised manifold learning algorithms
[2, 31, 15, 24, 23, 20, 32]. Another interesting contribution is found in the develop-
ments by Rahimi in [21]. A time series of regressors, some with measured outputs
and some not, are considered there. The series of estimates best fitting the given
outputs and at the same time satisfying some temporal smoothness assumption is
then computed.

Most of the references above are to semi-supervised classification algorithms.
They are however relevant since most semi-supervised classification methods can,
with minor modifications, be applied to regression problems. The modification or
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the application to regression problems are however almost never discussed or exem-
plified. For more historical notes on semi-supervised learning, see [4].

Similar methods to WDMR have also been discussed; see e.g. [7, 19, 31, 3, 2, 28].
In [31], manifold learning is discussed with construction of a semi-supervised
version of the manifold learning technique known as locally linear embedding
(LLE, [25]), which coincides with a particular choice of kernel in (9.15). Combin-
ing LLE with system identification was also discussed in [19]. In [7], graph-based
semi-supervised methods for classification were studied, deriving an objective func-
tion similar to (9.15). References [3, 28] discuss a classification method called la-
bel propagation which is an iterative approach converging to (9.15). In [2], support
vector machines were extended to work under the semi-supervised smoothness as-
sumption. There is also a huge literature on kernel smoothers; see e.g. [8].

9.8 Examples

The following two examples are regression problems for which the semi-supervised
smoothness assumption is motivated. Data presented and analyzed here were col-
lected for the present article.

9.8.1 Example 1—Functional Magnetic Resonance Imaging

Functional magnetic resonance imaging (fMRI) is a technique that measures brain
activity [30]—fMRI measurements reveal the degree of oxygenation in the blood via
the blood oxygenation level dependent (BOLD) response. The degree of oxygena-
tion reflects the neural activity in the brain, so fMRI is indirect measure of brain
activity.

Measurements of brain activity can be acquired with fMRI as often as once a
second and are given as an array, each element giving a scalar measure of the av-
erage activity in a small volume element of the brain. These volume elements are
commonly called voxels (short for volume pixel) and they can be as small as 1 mm3.
The fMRI measurements were heavily affected by noise.

We considered measurements from an 8× 8× 2 array covering parts of the vi-
sual cortex gathered with a sampling period of 2 seconds. To remove noise, data
were prefiltered by applying a spatial and temporal filter with a squared exponen-
tial kernel. The filtered fMRI measurements at each time t were vectorized into the
regression vector ϕt . fMRI data were acquired during 240 seconds (giving 120 sam-
ples, since the sampling period was 2 seconds) from a subject that was instructed
to look away from a flashing checkerboard covering 30% of the field of view. The
flashing checkerboard moved around and caused the subject to look to the left, right,
up and down. The gaze direction was seen as the output. The output was chosen to
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Fig. 9.5 WDMR applied to
brain activity measurements
(fMRI) of the visual cortex in
order to tell what direction the
subject in the MR scanner was
looking. Thin grey line shows
direction in which the subject
was looking and thick black
line the estimated direction by
WDMR.

0 when the subject was looking to the right, π/2 when looking up, π when looking
to the left and −π/2 when looking down.

Gaze direction is described by its angle, a scalar. The fMRI data should hence
be constrained to a one-dimensional closed manifold residing in the 128 dimen-
sional regressor space (since the regressors can be parameterized by the angle). If
we assume that the semi-supervised smoothness assumption holds, WDMR there-
fore seems like a good choice.

The 120 regressors with observed output were separated into two sets, a training
set consisting of 80 regressors and a test set consisting of 40 regressors. The training
set was further divided into an estimation set and a validation set, both the same size.
The estimation set and the regressors of the validation set were used in WDMR.
The estimated outputs of the validation regressors were compared to the measured
outputs and used to determine the design parameters. λ in (9.15) was chosen as 0.8
and K (using the kernel determined by LLE, see Appendix 9.10) as 6. The tuned
WDMR regression algorithm was then used to predict the direction in which the
person was looking. The results from applying WDMR to the 40 regressors of the
test set are shown in Fig. 9.5.

The result is satisfactory but it is not clear to what extent the one-dimensional
manifold has been found. The number of regressors with unobserved output used are
rather low and it is therefore not surprising that the Nadaraya–Watson smoother with
the KNN kernel can be shown to perform almost as well as WDMR in this exam-
ple. One would expect that adding more regressors with unobserved output would
improve the result obtained by WDMR. The estimates of the Nadaraya–Watson
smoother would however stay unchanged since the Nadaraya–Watson smoother is a
supervised method and therefore not affected by regressors with unobserved output.

208 H. Ohlsson and L. Ljung
     irmgn.ir



Fig. 9.6 A plot of the
[Sr]/[Ca], [Mg]/[Ca] and
[Ba]/[Ca] concentration ra-
tio measurements from five
shells. Lines connect mea-
surements (ordered chrono-
logically) coming from the
same shell. The temperatures
associated with the measure-
ments were color coded and
are shown as different grey
scales on the measurement
points. −5
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9.8.2 Example 2—Climate Reconstruction

There exist a number of climate recorders in nature from which past temperature
can be extracted. However, only a few natural archives are able to record climate
fluctuations with high enough resolution so that seasonal variations can be recon-
structed. One such archive is a bivalve shell. The chemical composition of a shell
of a bivalve depends on a number of chemical and physical parameters of the water
in which the shell was composed. Of these parameters, water temperature is prob-
ably the most important one. It should therefore be possible to estimate the water
temperature for the time the shell formed from measurements of the shell’s chemi-
cal composition. This feature would, for example, give climatologists the ability to
estimate past water temperatures by analyzing ancient shells.

In this example, we analyzed 10 shells grown in Belgium. Since the temperature
in the water for these shells had been monitored, this data set provides an excel-
lent means of testing how well one could predict water temperature from chemical
composition measurements. Chemical composition measurements had been taken
along the growth axis of the shells and paired up with temperature measurements.
Between 30 and 52 measurement were provided from each shell, corresponding to a
time period of a couple of months. The 10 shells were divided into an estimation set
and a validation set. The estimation set consisted of 6 shells (a total of 238 regres-
sors with observed output) grown in Terneuzen in Belgium. Measurements from 5
of these shells are shown in Fig. 9.6. The figure shows measurements of the relative
concentrations of [Sr]/[Ca], [Mg]/[Ca] and [Ba]/[Ca] ([Pb]/[Ca] is also measured
but not shown in the figure). As seen in the figure, measurements are highly re-
stricted to a small region in the measurement space. Also, the water temperature
(grey level-coded in Fig. 9.6) varies smoothly in the high density regions. This fea-
ture together with the fact that it is a biological process generating data, motivates
the semi-supervised smoothness assumption as we try to estimate water temperature
from chemical composition measurements (four-dimensional regressors).
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Fig. 9.7 Water temperature estimations using WDMR for validation data (thick line) and measured
temperature (thin line). From top to bottom figure, shells from: Terneuzen, Breskens, Ossenisse,
Knokke.

The 4 shells in the validation set came from four different sites (Terneuzen,
Breskens, Ossenisse, Knokke) and from different time periods. The estimated tem-
peratures for the validation data obtained by using WDMR with the kernel deter-
mined by LLE (see Appendix 9.10) are shown in Fig. 9.7. For comparison purposes,
we mention that the Nadaraya–Watson smoother using the LLE kernel had a mean
absolute error (MAE) nearly twice as high as WDMR.

A more detailed discussion of this example is presented in [1]. The data sets used
were provided by Vander Putten et al. [27] and Gillikin et al. [5, 6].

9.9 Conclusion

This chapter presents and discusses a novel linear kernel smoother, that of weight
determination by manifold regularization. The regression method is of particular
interest when regressors are confined to limited regions in the regressor space and
under the semi-supervised smoothness assumption. Examples of this type of prob-
lem were given.
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9.10 Appendix—Kernels

This section presents kernels referred to in the chapter. The convention that
k(ϕ i,ϕ j) = 0 if i = j is always used. See Chapter 4 in [22] for more on kernels.

9.10.1 The KNN Kernel

Define the K-nearest neighbor kernel as

k(ϕ i,ϕ j) ,






1
K

, if ϕ j is one of the K closest neighbors,

0, otherwise.
(9.26)

9.10.2 The Squared Exponential Kernel

Define the squared exponential kernel (sometimes called a Gaussian kernel) as

k(ϕ i,ϕ j) , e−‖ϕ i−ϕ j‖2/2l
2
. (9.27)

l is a parameter of the kernel and denoted the length scale.

9.10.3 The LLE Kernel

Local linear embedding (LLE), [25] is a technique to find lower dimensional mani-
folds to which an observed collection of regressors belong. A brief description of it
is as follows:

Let {ϕ i, i = 1, . . . ,N} belong to U ⊂ Rnϕ where U is an unknown manifold of di-
mension nz. A coordinatization zi (zi ∈ Rnz) of U is then obtained by first minimizing
the cost function

ε(l) =
N

∑
i=1

∥∥∥∥∥ϕ i−
N

∑
j=1

li jϕ j

∥∥∥∥∥

2

(9.28a)

under the constraints
{

∑N
j=1 li j = 1,

li j = 0 if ‖ϕ i−ϕ j‖> Ci(κ) or if i = j.
(9.28b)
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Here, Ci(κ) is chosen so that only κ weights li j become nonzero for every i. κ is
a design variable. It is also common to add a regularization to (9.28a) to prevent
degenerate solutions.

Then, for the determined li j, find zi by minimizing

N

∑
i=1

∥∥∥∥∥zi−
N

∑
j=1

li jz j

∥∥∥∥∥

2

(9.29)

with respect to zi ∈ Rnz under the constraint

1
N

N

∑
i=1

zizT
i = Inz×nz

zi will then be the coordinate for ϕ i in the lower dimensional manifold. Define now
the LLE kernel as

k(ϕ i,ϕ j) , li j (9.30)

where li j is defined in (9.28).
Note that the LLE kernel is invariant to translation, rotation and rescaling of the

regressors ϕ . By using the LLE kernel in (9.18) we hence assume that the map f0

is a linear combination of some coordinates that are invariant to translation, rotation
and rescaling of the regressors.
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18. Ohlsson, H., Ljung, L.: Semi-supervised regression and system identification. In: X. Hu,
U. Jonsson, B. Wahlberg, B. Ghosh (eds.) Three Decades of Progress in Control Sciences.
Springer, New York (2010). To appear

19. Ohlsson, H., Roll, J., Glad, T., Ljung, L.: Using manifold learning for nonlinear system iden-
tification. In: Proc. 7th IFAC Symposium on Nonlinear Control Systems (NOLCOS2007), p.
706711. Pretoria, South Africa (2007)

20. Ohlsson, H., Roll, J., Ljung, L.: Manifold-constrained regressors in system identification.
In: Proc. 47th IEEE Conf. Decision and Control (CDC2008), p. 13641369. Cancun, Mexico
(2008)

21. Rahimi, A., Recht, B., Darrell, T.: Learning to transform time series with a few examples.
IEEE Trans. Pattern Analysis and Machine Intelligence 29(10), 1759–1775 (2007)

22. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. The MIT
Press, Cambridge, MA (2005)

23. de Ridder, D., Duin, R.P.: Locally linear embedding for classification (2002). Technical Re-
port, PH-2002-01, Pattern Recognition Group, Dept. of Imaging Science & Technology, Delft
University of Technology, Delft, The Netherlands.

24. de Ridder, D., Kouropteva, O., Okun, O., Pietikinen, M., Duin, R.: Supervised locally linear
embedding. In: O. Kaynak, E. Alpaydin, E. Oja, L. Xu (eds.) Artificial Neural Networks and
Neural Information Processing – ICANN/ICONIP 2003, Lecture Notes in Computer Science,
vol. 2714, pp. 333–341. Springer Berlin / Heidelberg (2003)

25. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding.
Science 290(5500), 2323–2326 (2000)

26. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear
dimensionality reduction. Science 290(5500), 2319–2323 (2000)

9 Weight Determination by Manifold Regularization 213
     irmgn.ir
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Chapter 10
Dynamic Coverage and Clustering:
A Maximum Entropy Approach

Carolyn Beck, Srinivasa Salapaka, Puneet Sharma and Yunwen Xu

Abstract We present a computational framework we have recently developed for
solving a large class of dynamic coverage and clustering problems, ranging from
those that arise in the deployment of mobile sensor networks to the identification of
ensemble spike trains in computational neuroscience applications. This framework
provides for the identification of natural clusters in an underlying dataset, while
addressing inherent tradeoffs such as those between cluster resolution and computa-
tional cost. More specifically, we define the problem of minimizing an instantaneous
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10.1 Introduction

There has been a recent growing interest in the development of algorithms for de-
ployment of mobile resources that continuously cover a set of mobile sites in a
region, that is, algorithms related to determining clusters in an ensemble of moving
objects. Such algorithms have numerous applications, such as in developing auto-
matic deployment and tracking techniques for surveillance and military applications
[4, 8], in clustering of the spatio-temporal dynamics of brain signals [18, 17, 1] and
in routing traffic and detecting traffic jams by clustering traffic flow [30].

Clustering algorithms for static data have been widely studied in various areas,
such as the minimum distortion problem in data compression [10], facility location
assignments [5], optimal quadrature rules and discretization of partial differential
equations [6], pattern recognition [33], drug discovery [28] and recently in coarse
quantization [7, 16, 22]. However, the focus on clustering dynamically evolving data
is new and many issues pertaining to quantification, analysis and design for coverage
remain unsolved.

Although the static problems focus on seemingly unrelated goals, they, in fact,
share a number of fundamental common attributes. They are typically formulated
under a class of combinatorial optimization problems that searches for an optimal
partition of the underlying domain, as well as an optimal assignment of elements,
from a finite resource set to each cell in the partition. Since both the number of par-
titions as well as the number of element associations to partitions are combinatorial,
these problems are computationally intractable (i.e., NP-hard [11]), which rules out
exhaustive search methods. The cost functions in these optimization problems con-
tain numerous local minima, and therefore it is crucial to design algorithms that do
not get trapped in local minima [11].

The complexity of the combinatorial problem addressed in this chapter is fur-
ther compounded by the dynamics associated with each data point, i.e., the moving
objects. These moving objects could be, for example, mobile threat locations in a
battlefield scenario, ensemble neuronal spike trains in brain signal data, formations
of unmanned vehicles, or naturally occuring swarms or flocks. The task at hand is to
design a dynamic control law for mobile resources such that they continuously iden-
tify and track cluster centers of groups of moving objects. Thus, locations of each
data-point in the static case are replaced by velocity and/or acceleration fields in the
dynamic case. From a naive computational viewpoint, the dynamic problem can be
regarded as a time-indexed set of static problems. Adding dynamics also introduces
new complexities to the notions of coverage due to the dynamic nature of cluster
sizes, number of clusters, and relative distances between the individual elements.

Problems related to dynamic coverage were considered in [4, 8, 3, 30], in which
distributed implementation approaches are used. Distributed schemes aim to ad-
dress the issue of large impractical or nonviable computational efforts required for
centralized schemes; however, these algorithms are prone to converge to one of the
many local minima typically present in these problems. As a consequence, the per-
formance of distributed algorithms is extremely sensitive to initial placement of the
resource locations. At present, there is little research that addresses the develop-
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ment of tractable algorithms for dynamic problems of a nondistributed nature, that
is, algorithms that aim simultaneously to attain global solutions and maintain low
computational expense.

In this chapter, we present a general framework based on the maximum entropy
principle (MEP) to formulate and solve dynamic clustering problems, which ad-
dresses both coverage and tracking. The framework we propose, which we refer to
as the dynamic maximum entropy (DME) framework, adapts the notion of coverage
to the dynamic setting and resolves the inherent trade-off between resolution of the
clusters and computational cost, while avoiding shallow local minima. The algo-
rithms we propose are hierarchical in that they progressively seek finer subclusters
from larger clusters. An important feature of the proposed framework is its ability to
detect natural cluster centers in the underlying data set, without the need to initialize
or define the clusters a priori. The computational complexity of these algorithms is
reduced by exploiting structure in the problem formulation. The algorithms, as they
proceed, become more “local”, that is, the computation of clusters becomes less sen-
sitive to distant sites. This feature is exploited to make these algorithms scalable and
computationally efficient. Our simulation results, employing algorithms based in the
DME framework, demonstrate improvements in computation time and illustrate the
flexibility of this framework.

We note that an MEP-based approach has been developed in the static setting
in the context of vector quantization (VQ) problems in the data-compression com-
munity. The resulting algorithm, known as the deterministic annealing (DA) algo-
rithm, has been shown to avoid local minima, provide provably better clustering
results than the popular k-means algorithms, and converge faster than other heuris-
tics designed to avoid local minima such as the simulated annealing algorithm [21].
The DME framework we propose inherits the advantages of the DA algorithm and,
further, addresses tracking as well as resolution issues originating from cluster dy-
namics.

This chapter is organized as follows. We discuss the general setting of the dy-
namic coverage problem in Sec. 10.2 and highlight key issues and challenges that
must be resolved so such problems can be solved. We also provide an overview of
the DA algorithm developed in [21] for clustering static data in this section and an-
alyze those features that are relevant to the dynamic problem. The proposed DME
framework for solving the clustering problem for dynamic data is presented in Sec.
10.3. Scalability issues are discussed in Sec. 10.4. Implementation and simulation
results for a variety of data sets are presented in Sec. 10.5. Conclusions and direc-
tions for future work are discussed in Sec. 10.6.

10.2 Dynamic versus Static Clustering

Although the static clustering problem has been extensively studied, in this chap-
ter we focus on the scenario where the problem is to detect and track a group of
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moving objects (henceforth referred to as sites) in a given area; that is, the dynamic
clustering problem.

10.2.1 Problem Formulation

The mobile sites we study may move in clusters and change cluster associations, and
the clusters themselves can split and rejoin over time. This problem can be posed as
a coverage problem, where the aim is to successively identify representative object
locations (in the sequel referred to as resource locations, or cluster centers) such
that the resources provide adequate coverage of the moving sites at all times. The
number of resources is assumed to be far fewer than the number of moving sites.
Each resource can then be thought of as a cluster center.

For notational convenience, we consider a domain Ω ⊂ R2 with N mobile sites
and M resources, where N≫M, on a time horizon in [0,∞). (Note that the approach
we develop in this chapter is applicable to domains Ω ⊂ Rk, for any k ∈ N; however,
we will restrict our discussion herein to k = 2 for ease of exposition.) The location
of the ith mobile site (i ≤ N) and the jth resource ( j ≤ M) at time instance t ∈
[0,∞) is represented by xi(t) = [ξ i(t) η i(t)]

T ∈ R2 and y j(t) = [ρ j(t) ω j(t)]T ∈ R2,
respectively. We will sometimes simply use xi and y j in place of xi(t) and y j(t),
where the time dependence is assumed and is clear from the context. The dynamics
are given by the continuously differentiable velocity fields, φ i(x,y,t)∈ R2, i≤N, for
the ith site and u j(t) ∈ R2, j ≤M, for the jth resource, where x and y represent the
locations of all sites and resources, respectively. More precisely, we have a domain
Ω with N sites {xi} and M resource locations {y j}, whose dynamics are given by

ẋ(t) = φ(x(t), y(t),t), x(0) = x0

ẏ(t) = u(t), y(0) = y0

m
ζ̇ = f (ζ ,t), (10.1)

where x(t) = [x1(t) x2(t) · · · xN(t)]T , y(t) = [y1(t) y2(t) · · · yM(t)]T , φ(t) =
[φ 1(t) φ 2(t) · · · φ N(t)]T , u(t) = [u1(t) u2(t) · · · uM(t)]T , and ζ (t) = [xT yT ]T . This
system can be viewed as a control system where the control field u is to be deter-
mined for the M mobile resources such that a notion of coverage is maintained. We
summarize the main challenges and our objectives in addressing dynamic coverage
problems in the following:

• One of the main challenges in dynamic coverage problems is fundamental: quan-
tifying the performance objectives. We adopt the concept of distortion and its
variants from the data compression literature (which deals with static cover-
age problems) as a metric for coverage and modify this to make it suitable to
a dynamic setting. Distortion, in a static coverage problem, is a measure of the
(weighted) average distance of the site locations to their nearest resource loca-
tion. For a static problem (φ(t) ≡ 0,u(t) ≡ 0), the distortion measure is given
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(a) (b)

Fig. 10.1 The clustering solution in (a) identifies 4 coarse clusters centers y j,1≤ j≤ 4 (shown by
stars) in the underlying data xi,1≤ i ≤ 37 (shown by squares). On the other hand, the solution in
(b) identifies 7 finer clusters at a higher resolution on the same underlying data. The solution in (b)
has lower distortion D than in (a), but at the expense of higher computation time.

by

D(x,y) = ∑
xi∈Ω

pi

{
min

1≤ j≤M
d(xi,y j)

}
, (10.2)

where pi represents the weight or relative importance of the site xi and d(xi,y j)
is a metric defined on Ω , which represents a distance function; this is typically
given by a squared Euclidean distance function d(xi,y j) = ‖xi−y j‖2. Thus, for a
given set of site locations {xi}, 1≤ i≤N, the set of resource locations {y j}, 1≤
j ≤M that achieves lower distortion results in better coverage.

• A second challenge arises in defining clusters. This challenge primarily stems
from the fact that clusters are hierarchical in nature. Each cluster can be thought
of as smaller subclusters (Fig. 10.1), and in the limiting case comprising every
moving site can be thought of as a distinct cluster. On the other hand, the entire
domain can be thought of as a cluster. Thus, we consider assigning a notion of
resolution for a cluster. Iterative algorithms that identify finer and finer (higher
resolution) clusters progressively reduce the coverage cost function, but at the
expense of increased computation.

Modeling the coverage function and defining clusters is even more challenging
in the dynamic case, since the coverage function must adjust to and appropri-
ately reflect the expanding, shrinking, splitting and/or coalescing components of
clusters, adding further variability to the control design.

• Computational complexity is a third important challenge confronting the solution
of coverage problems, arising from the inherent nonconvex nature of the distor-
tion function (10.2). The dynamic distortion function contains numerous local
minima, just as it does in the static case. Consequently, the problem necessitates
designing algorithms that do not get trapped at local minima, while also avoid-
ing expensive divide-and-search strategies. This complexity is further aggravated
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by the additional time component in the dynamic setting. These challenges are
addressed by the framework proposed in this section. More specifically we for-
mulate a coverage problem and propose algorithms that determine the resource
velocity fields u(t), such that they track each cluster over time. If a cluster splits,
the resource locations mimic this behavior, thereby maintaining coverage.

10.2.2 The Static Resource Allocation Approach

Dynamic data may be viewed as a time-indexed series of static data, thus the sim-
plest approach conceptually is to perform static clustering periodically. However, if
the elapsed time between two successive clustering events is small, the algorithm
is unnecessarily expensive because the spatial clustering from previous time steps
is not exploited for clustering at current and future time steps. On the other hand,
if the time period is long the clustering obtained at the previous time step does not
provide adequate tracking during the interval to the current time step. In short, such
a simplistic approach ignores the spatio-temporal aspects of clustering moving data.
Nevertheless, we provide a brief overview of this approach to provide insights into
the challenges that are inherited by the dynamic problems. In this frame-by-frame
approach, at each instant of time t, we solve the following static resource allocation
problem:

Given N sites xi(t),1 ≤ i ≤ N, in a domain Ω with relative weights pi, find the
set of M resource locations y j(t),1≤ j ≤M, that minimizes the distortion (at fixed
time t); that is, find

argmin
y j , 1≤ j≤M

(
N

∑
i=1

pi

{
min

1≤ j≤M
d(xi,y j)

})
(10.3)

Again, d(xi,y j) represents an appropriate distance function between the resource

location y j and the site xi, for example, d(xi,y j) = ‖xi− y j‖2 + ‖φ i−u j‖2, where
velocity terms as well as location terms are included in the Euclidean distance func-
tion. Minimizing (10.3) is akin to finding a velocity field for the resources such that
the coverage condition is satisfied at time t.

This problem is equivalent to finding an optimal partition of the domain space
Ω at time t into M cells (R j, j = 1 . . .M) and assigning to each cell R j a resource
location y j that minimizes the partition cost, given by ∑ j ∑xi∈R j

d(xi,y j)pi. Solving
this partitioning problem at a fixed time t is equivalent to the vector quantization
problem in data compression, which is addressed by the DA algorithm [21, 20].

We now describe relevant features of the DA algorithm [19], which provide a
basis for our DME algorithm.
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10.2.3 The Deterministic Annealing Algorithm: Clustering in the
Static Setting

One of the main objectives of the DA algorithm is to avoid local minima. This al-
gorithm can be viewed as a modification of Lloyd’s algorithm [15, 10], in which
the initial step consists of randomly choosing resource locations and then succes-
sively iterating between the steps of: (1) forming Voronoi partitions and (2) moving
the resource locations to respective centroids of cells until the sequence of resource
locations converges. The solution depends substantially on the initial placement of
resources, as in successive iterations the locations are influenced only by nearby
points of the domain and are virtually independent of distant points. As a result,
Lloyd’s algorithm typically converges to local minima.

The DA algorithm overcomes the local influence of domain elements by allowing
each element xi ∈ Ω to be associated with every resource location y j through a
weighting parameter p(y j|xi) (without loss of generality, ∑ j p(y j|xi) = 1 for every
1 ≤ i ≤ N) [21, 20, 26, 27]. Thus, the DA algorithm eliminates the hard partitions
of Lloyd’s algorithm and seeks to minimize a modified distortion term given by

D(x,y) =
N

∑
i=1

pi

M

∑
j=1

d(xi,y j)p(y j|xi). (10.4)

Note that the instantaneous weighting term p(y j|xi) (at time t) can also be viewed
as an association probability between the mobile site xi and the mobile resource y j.
The choice of weights {p(y j|xi)} determines the trade-off between decreasing ef-
fects of local influence and deviation of the distortion (10.4) from the original cost
function (10.2). For instance, a uniform weighting function, where p(y j|xi) = 1/M
for all i ≤ N, j ≤M, makes the minimization of (10.4) with respect to y j indepen-
dent of initial placement of y j; however, the corresponding distortion function is
considerably different from the cost function in (10.2). At the other extreme, set-
ting p(y j|xi) = 1 when d(xi,y j) = mink d(xi,yk), but otherwise setting p(y j|xi) = 0,
makes the distortion term in (10.4) identical to the cost function (10.2) but retains
the “local influence effect” when minimizing with respect to y j.

The MEP provides a systematic way to determine a weighting function that
achieves a specific feasible value of distortion, and thereby achieves a prespecified
tradeoff in the above context [12, 13]. More specifically, we seek a weight distribu-
tion p(y|x) that maximizes the Shannon entropy [25]

H(y|x) =−
N

∑
i=1

pi

M

∑
j=1

p(y j|xi) log(p(y j|xi)), (10.5)

at a given (feasible) level of coverage D(x,y) = D0. The entropy term quantifies the
level of randomness in the distribution of association weights, so maximizing this
term causes the weights to be maximally noncommittal toward any single cluster.
In this framework, we first determine the weighting functions by maximizing the
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unconstrained Lagrangian L = H(y|x)−β (D(x,y)−D0) with respect to {p(y j|xi)},
where H(y|x) and D(x,y) are given by (10.5) and (10.4) respectively, D0 is the
desired value of distortion and β is a Lagrange multiplier. This is equivalent to
the minimization problem:

min
{p(y j|xi)}

D(x,y)−TH(y|x)︸ ︷︷ ︸
△
=F

, (10.6)

where the Lagrange multiplier, denoted by T = 1/β , and the term F are called
temperature and free energy, respectively, analogously to quantities in statistical
physics [14]. The MEP theorem (see [12, 13]) gives an explicit solution for the
weights, given by the Gibbs distribution

p(y j|xi) =
exp{−βd(xi,y j)}

∑M
k=1 exp{−βd(xi,yk)}

(10.7)

On substituting (10.7) into the Lagrangian (10.6) we have

F(x,y) =− 1
β

N

∑
i=1

pi log
M

∑
k=1

exp{−βd(xi,yk)}. (10.8)

This function plays an important role in representing the coverage function (as will
be shown later). The resource locations {y j} are specified by setting ∂F/∂y j = 0,
which yields

y j =
N

∑
i=1

p(xi|y j)xi, ∀ j = 1,2, . . . ,M, with p(xi|y j) =
pi p(y j|xi)

∑N
m=1 pm p(y j|xm)

(10.9)

where p(xi|y j) denotes the posterior association weight calculated using Bayes’s
rule. The above equations clearly convey the “centroid” aspect of the solution.

The temperature variable T = 1/β is fixed by the constraint value D0 of the
distortion. A simple sensitivity analysis shows that lower values of D0 correspond
to lower values of the temperature variable [13]. Clearly, for small values of β (i.e.,
large values of T ) in (10.6), we are mainly maximizing the entropy. Thus a choice of
weights corresponding to a high value (near infinity) of T leads to algorithms that are
insensitive to the initial allocation of resource locations, since their subsequent loca-
tions are affected almost equally by all sites. As β is increased, we trade entropy for
the reduction in distortion, and as β approaches infinity (i.e., T approaches zero), we
minimize distortion D directly to obtain a hard (nonrandom) solution. An annealing
process is incorporated where the minimization problem (10.6) is repeatedly solved
at different values β = β k, where β k+1 > β k. Solving the implicit equation (10.9) to
determine y j entails the most computationally expensive step for each value of β k.
This equation is solved by evolving the following dynamical system to convergence:

222 C. Beck et al.

     irmgn.ir



yk
j(n+ 1) =

N

∑
i=1

p(xi|yk
j(n))xi, 1≤ j ≤M, n≥ 0, (10.10)

where yk
j(n) represents the value of the estimate of y j (when the temperature value

is given by β = β k) at the nth step of this iterative procedure. At each k, the initial
value yk

j(0) is set to the final value for k−1, that is yk
j(0) = yk−1

j (∞). Note that the
iterative process (10.10) is equivalent to a Newton descent method and, accordingly,
this procedure inherits the convergence properties of a Newton descent method.

The annealing process itself exhibits a phase transition property. That is, there
are critical values of β at which the number of distinct resource locations abruptly
change. At β = 0, there is only one resource at the weighted centroid of all site
locations xi. As the parameter β is increased, there exists some critical value β c
such that the number of distinct resource locations that minimize free energy jumps
from m = 1 for β < β c to some m > 1 for β > β c. This critical value, β c, can be
computed explicitly from the distribution of the sites xi and resource locations y j.
As β is increased further, successive critical values are reached that also satisfy the
phase transition condition. At each such critical value, there is an increase in the
number of the distinct resource locations. A detailed version of the implementation
steps is presented [21].

10.2.4 Properties of the DA Algorithm

The features developed for the static coverage algorithm form the basis for our DME
framework. In this formulation, various cluster attributes, such as relative size and
shape, arise naturally, thereby preemting the need for new characterization variables.
The weights {p(xi|y j)} characterize soft clusters; a high value of p(xi|y j) implies
the site xi predominantly belongs to jth cluster, which is covered by the resource at
location y j. The weight p(xi|y j), when viewed as a function of xi for a fixed y j , deter-
mines the shape of the jth cluster. Cluster mass is characterized by the set of weights
{p(y j)}. Since p(y j) = ∑i pi p(y j|xi), this represents the total mass associated with
the resource y j. That is, p(y j)N is an estimate of the number of sites that determine
the jth cluster. In this work, we assume min j{p(y j)} > ν > 0 to avoid modeling
degenerate (or zero-mass) clusters. As the annealing parameter β →∞, the weights
{p(y j|xi)} become binary valued and the resulting clusters become “hard”.

Notation: We define matrices

Px
△
= diag(p(xi)) ∈ RN×N , Py|x

△
= [p(y j|xi)]

and
Px|y

△
= [p(xi|y j)] ∈ RN×M, Py

△
= diag(p(y j)) ∈ RM×M
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. In this notation, Px|y and Py contain information about the relative shapes and sizes
of the clusters. Also note that

PxPy|x = Px|yPy = Pxy = [p(xi,y j) = pi p(y j|xi)]

The expression for cluster centers, given by (10.9), can be written concisely as y =
P̌T

x|yx where

P̌x|y
△
= (I2⊗Px|y)

I2 is the 2×2 identity matrix, and⊗ represents the matrix Kronecker product. Sim-
ilarly, we define matrices

P̌y|x
△
= (I2⊗Py|x), P̌x

△
= (I2⊗Px), P̌y

△
= (I2⊗Py), and P̌xy

△
= (I2⊗Pxy)

The radius of each cluster can be inferred from the magnitudes of the vectors xi−
yc[i] (1 ≤ i ≤ N), where yc[i] denotes the resource location closest to the site xi. We
define

x̄
△
= x− P̌y|xP̌T

x|yx

which determines the weighted average distance of xi from the cluster centers {y j};
that is,

x̄i = xi−∑
j

p(y j|xi)y j

Additional important features of the DA algorithm are summarized in the following.

Theorem 10.1. The following properties hold for the Deterministic Annealing al-
gorithm:

1. Centroid property [21]: limβ→0 y j = ∑N
i=1 pixi.

2. Phase transition Property [21]: The resource locations {y j} given by (10.9) give
a local minimum for free energy F at every value of β except at critical temper-
atures when β = β c, given by β−1

c = 2λ max(Cx|y j
) for some 1≤ j ≤M, where

Cx|y j =
N

∑
i=1

p(xi|y j)(xi− y j)(xi− y j)
T (10.11)

and λ max(·) represents the largest eigenvalue. Moreover, the number of distinct
locations in {y j(β )} for β > β c is greater than for β < β c.

3. Sensitivity-to-temperature property [29]: If the parameter value β is far from
the critical values β c, that is the minimum eigenvalue of (I− 2βCx|y j

)≥ ∆ for
some ∆ > 0 and 1≤ j ≤M, then

‖ dy
dβ
‖ △

=

(

∑
j
‖dy j

dβ
‖2

) 1
2

≤ c(β )

∆
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where c(β ) monotonically decreases to zero with β and is completely deter-
mined by β and the size of the space Ω .

Sketch of Proof: Proofs for properties 1 and 2 can be found in [21]). Herein we
provide a sketch of a proof for property 3; full details can be found in [29].

We obtain dy j/dβ by differentiating (10.9) with respect to β . Premultiplying
dy j/dβ by

p(y j)
dy j

dβ

T

and summing over j gives

∑
j

p(y j)
dy j

dβ

T [
I− 2βCx|y j

] dy j

dβ
︸ ︷︷ ︸

T1

= ∑
i

pi ∑
j

p(y j|xi)(xi− y j)
T dy j

dβ

{

∑
k

p(yk|xi)d(xi,yk)−d(xi,y j)

}

︸ ︷︷ ︸
T2

− 2β ∑
i

pi ∑
j

p(y j|xi)(y j− xi)
T dy j

dβ ∑
k

p(yk|xi)(yk− xi)
T dyk

dβ
.

︸ ︷︷ ︸
T3

Since T3 is nonnegative, and T1 +T3 = T2, we have T2 ≥ T1, which in turn implies

T2 ≥min
j
{p(y j)}∆ ∑

j

dy j

dβ

T dy j

dβ
= min

j
{p(y j)}∆

∥∥∥∥
dy
dβ

∥∥∥∥
2

. (10.12)

Also, since ∑k p(yk|xi) = 1, T2 can be rewritten as

T2 = ∑
i

pi ∑
j
∑
k

p(y j|xi)p(yk|xi) [d(xi,yk)−d(xi,y j)](y j− xi)
T dy j

dβ
. (10.13)

To obtain an upper bound on T2, we first obtain a bound on the association weights,

p(y j|xi) =
e−β(d(xi,y j)−d(xi,yk))

1 +∑m6=k e−β(d(xi,ym)−d(xi,yk))
≤ e−β(d(xi,y j)−d(xi,yk)). (10.14)

Since ‖x− y j‖ ≤ 2w1
△
= 2 diameter(Ω) and

|e−β(d(xi,ym)−d(xi,yk))(d(xi,ym)−d(xi,yk))| ≤
e−1

β
,

(since θe−γθ < e−1

γ for γ > 0), we can infer a bound on T2 given by
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T2 ≤
e−1

β
(2w1)∑

j

∥∥∥∥
dy j

dβ

∥∥∥∥≤
(

e−1

β
(2w1)

√
M

)∥∥∥∥
dy
dβ

∥∥∥∥ (10.15)

From (10.12) and (10.15), we have that

min
j
{p(y j)}∆‖

dy
dβ
‖2 ≤ |T2| ≤

(
e−1

β
(2w1)

√
M

)∥∥∥∥
dy
dβ

∥∥∥∥ ,

which implies that

∥∥∥∥
dy
dβ

∥∥∥∥≤
c(β )

∆
, where c(β ) =

(
e−1

νβ
(2w1)

√
M

)

is completely determined by the value of β and the bound of the size of the space
Ω . Here ν is a lower bound on miny j{p(y j)}, the minimum cluster size and w1 is
the diameter of space Ω . ⊓⊔

The centroid property implies that for small values of β the DA algorithm places
all resources at the weighted centroid of the sites, that is, at β = 0 the cost func-
tion (10.6) achieves the global minimum with p(y j|xi) = 1/M and with all resource
locations {y j} being placed at the centroid of the data set. The annealing process
deforms the free energy F from the entropy function at β = 0 to the distortion func-
tion at β =∞, which allows us to track the evolution of the global minimum as β
is increased.

The phase transition property guarantees that the resource locations obtained at
noncritical β values are local minima of F . In this sense, the performance of this
algorithm is as good as or better than related algorithms such as Lloyd’s algorithm.
As β →∞, the DA algorithm essentially converges to Lloyd’s algorithm, with the
choice of initial placement of locations (through the annealing process) designed to
achieve better minima. The phase transition property also obviates the hierarchical
nature of the algorithm. When the value of β crosses a critical threshold value, β c,
the number of distinct resource locations jumps; this is referred to as a splitting
process and is used explicitly to identify natural clusters in the data.

The sensitivity-to-temperature property implies that in the static algorithm—the
rate of change of the resource locations between two critical temperatures—can
be bounded above. The condition on the minimum eigenvalue of I− 2βCxi|y j

for
1≤ j ≤M being bounded away from zero corresponds to non-critical temperature
values. The bounds given in this theorem are conservative; better bounds can be
obtained by imposing additional assumptions on the data [29]. This property has
important consequences—namely the rate at which we change temperature values,
that is the cooling rate, can be high—and typically we increase β geometrically,
that is

β k = γkβ 0 for some γ > 1. (10.16)

It is this property that forms the basis for extending the MEP-based framework to
the dynamic setting.
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Remark 10.1. Recall that the static problem is NP-hard. The cooling law for the
annealing process in the DA algorithm is typically geometric, as is indicated in
(10.16), and therefore avoiding local minima comes at a cost of only a few itera-
tion steps (in comparison, other annealing procedures such as simulated annealing
require much slower (O(logN)) cooling rates [9]). The MEP-based framework has
additional flexibility, for example, we have proposed adoptings constraints that re-
flected computational expense and obtained weight functions that accommodated
for this constraint. The resulting scalable algorithms were 75%− 80% more effi-
cient in terms of computation time than the original algorithm.

10.3 The Dynamic Maximum Entropy Framework

In this section, we present our general framework for formulating the dynamic clus-
tering problem and determining computationally efficient algorithms that resolve is-
sues of numerous local minima, quantifying coverage and cluster resolution, spatio-
temporal smoothening, achieving trade-offs between computational cost and reso-
lution and tracking dynamically evolving clusters. As noted earlier, using a frame-
by-frame approach is not computationally viable as it requires multiple iterations at
each time step.

We use free energy as the metric for coverage, which together with an annealing
process provides a basis for an algorithm that is independent of the initial choice
of resource locations and avoids local minima. The instantaneous cluster center zc,
which is determined solely by site locations xi (see (10.9)), is given by the recursion
zc = P̌cT

x|yx, where Pc
x|y = [p(xi|zc

j)] ∈ RN×M (see Sec. 10.2.4 for details on notation).
Note we represent the cluster center by zc to distinguish it from the instantaneous
resource location y. Since cluster centers, shapes, and mass are specified by

zc = P̌cT
x|yx, P̌c

x|y and P̌c
y

respectively (see Sec. 10.2.4), the cluster-drift, intra-cluster, and inter-cluster-inter-

action dynamics are quantified by φ , ˙̌Px|y
c
, and ˙̌Py

c
, respectively.

In adapting the static concepts for the dynamic setting we must determine appro-
priate cooling rates (as in (10.16)) relative to the time scales of the site dynamics. For
example, if the rate of cooling is much faster than the given dynamics of the sites,
the resulting algorithm is similar to the frame-by-frame approach. However, from
the sensitivity-to-temperature property in Theorem 10.1, we know the resource lo-
cations are insensitive to temperatures between two successive critical temperatures.
Critical temperatures are indicative of splits and resolution, thus decreasing temper-
ature values matter only for forcing these splits or obtaining higher resolution. Note
that in the dynamic setting, the cluster splits at time t are still identified by critical
temperatures given by β−1

c = 2λ max(Cx(t)|y j(t)) (once the resource locations y j(t)
are at cluster centers). However, unlike the static case, these splitting conditions can
be reached due to dynamics of x and y, in addition to decreasing values of β .
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Fig. 10.2 The condition on the velocity field φ for consistent clusters. The solid circle represents
the weighted cluster centroid xc

i that is closest to the ith site with velocity φ i, i.e., φ̄ i = piφ i. The

condition φ̄ T x̄c < 0 implies that the angle between x̄c
i and φ̄ i is obtuse (in an average sense) and

hence the individual sites are directed toward the cluster and not away from it.

This interpretation of the sensitivity-to-temperature property allows us to sep-
arate the dynamic clustering problem into two subproblems: (1) tracking cluster
centers; and (2) monitoring splitting conditions. In our implementations, we split
the resource locations only after they have reached the cluster centers. We monitor
the cluster splits that result due to site dynamics or the cooling law. The resulting
algorithm, as well as the incorporation of user-specified decisions on splits and res-
olutions, are presented later in this section.

Our main tracking results are briefly summarized in the following.

1. Under the assumption that the site dynamics given by φ (ζ ,t) in (10.1) are con-
tinuously differentiable, we provide a control law u(ζ ) such that the resource
locations asymptotically track the cluster centers (see Theorem 10.3).

2. We show this control law is nonconservative, that is, if u(ζ ) is not bounded then
there does not exist any Lipschitz control law that achieves asymptotic tracking
for the system given by (10.1) (see Theorem 10.4).

3. If we further assume the clusters are consistent (that is, the average cluster size
is nonincreasing and clusters are separated), then the prescribed control that
achieves asymptotic tracking is bounded (see Theorem 10.5).

The results stated in 1 and 2 require only mild assumptions on the site dynamics.
For the result in 3 we require the clusters to be consistent, that is, the distance from
a site location xi to the closest cluster center zc

j does not increase with time. We
impose this constraint, albeit in an average sense, by assuming that φ satisfies

φ̄T
x̄c ≤ 0, where φ̄ = P̌c

x φ and x̄c = x− P̌c
y|xP̌cT

x|yx

Since the cluster center zc = P̌cT
x|yx, x̄c denotes the average weighted vector from

each site location xi to these cluster centers (with the nearest cluster center weighted
heavily for large β ), consequently, φ̄ T x̄c ≤ 0 implies that velocity φ is such that
magnitudes of these vectors are nonincreasing (see Fig. 10.2). We first elaborate on
properties of the free energy term and its time derivative, which form the basis for
addressing both the problems of tracking cluster centers and monitoring splitting
conditions.
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10.3.1 The Free Energy Term

The crux of the DA algorithm for the static setting is that it replaces the notion of
distortion in (10.2) by the free energy in (10.8) as a metric for coverage. In order to
achieve the objective of tracking the cluster centers without resorting to the frame-
by-frame approach, we formulate a control problem, where we design the velocity
u(t) for the resource locations such that the time derivative Ḟ of the free energy
function is nonpositive along the trajectories of x(t) and y(t). Such a formulation not
only addresses the drawbacks of the frame-by-frame clustering approach, but also
preserves the advantages of the DA algorithm found with static data. Moreover, the
condition under which control authority is lost, that is, where ∂F/∂y = 0, provides
explicit connections to the splitting conditions and cooling laws encountered in the
static setting. We summarize the properties of free energy and its time derivative in
the following theorem. For a proof of these properties see [29].

Theorem 10.2. Let F given by (10.8) be the free energy for the sites and resources
xi, 1≤ i ≤ N, and y j, 1≤ j ≤M, whose dynamics are defined by (10.1). Then

1. Positivity: F(ζ )+ 1
2β logM > 0 for all ζ in

(
R2
)N+M

.
2. Structured derivative: The derivative of the free energy term has the following

structure:

Ḟ = 2ζ T Γ (ζ ) f (ζ ), Γ =

(
P̌x −P̌xy

−P̌T
xy P̌y

)
. (10.17)

The matrix Γ is a symmetric positive semidefinite matrix for all ζ , which can
be decomposed as α(I−W ) where α > 0, I is the identity matrix and W is a
symmetric doubly stochastic matrix with spectral radius ρ(W ) = 1.

3. Loss of dynamic control authority at cluster centers: The derivative Ḟ becomes
independent of the control, that is, ∂ (Ḟ)/∂u = 0 (or equivalently the par-
tial derivative ∂ F/∂y = 0) only at those time instants tc when the resource
locations y j(tc) are coincident with the cluster centers, that is, only when
y j(tc) = ∑N

i=1 p(xi(tc)|y j(tc))xi(tc) for 1≤ j ≤M.

10.3.2 Control Design: Tracking Cluster Centers

The resource locations coincide with the cluster centers only when y j−∑i p(xi|y j)xi

is zero for each j, that is, when

ȳ
△
= y− P̌T

x|yx = 0

For design of u, we transform the coordinates ζ = (x,y) to ζ̄ = (x, ȳ), in which the
dynamics in (10.1) and Ḟ given by (10.17) are rewritten as
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ẋ(t) = φ ,

˙̄y(t) = u− ˙̌Px|y
T

x− P̌T
x|yφ
⇐⇒ ˙̄ζ = f̄ (ζ̄ ,t) and Ḟ = x̄T φ̄ + ȳT P̌yū (10.18)

where ū = u− P̌T
x|yφ . We exploit the affine dependence of Ḟ in (10.18) on ū to make

Ḟ nonpositive analogous to control design based on control Lyapunov functions
[24, 31, 32]. More specifically we choose ū from sets of the form:

Ū(α) = {ū :
(
R2)N+M →

(
R2)M | ū(ζ̄ ) =−[K0 +

α(ζ̄ )+ θ(ζ̄ )

ȳT P̌yȳ
]ȳ, ȳ 6= 0} (10.19)

for some θ(ζ̄ )≥ 0 and K0 > 0, which are parameterized by functions

α(·) :
(
R2)N+M → R

The following theorem establishes that the assumption of continuously differen-
tiable φ in (10.1) (which ensures Ḟ is of bounded variation) is adequate for the
control design to achieve asymptotic tracking of clusters. We first state the follow-
ing lemma, which is used in the proof of the theorem; a proof for this lemma can be
found in [29].

Lemma 10.1. For a nonnegative function g : R→ R of bounded variation, if∫∞
0 g(τ)dτ <∞, then limt→∞ g(t) = 0.

Theorem 10.3 (Tracking). For the site-resource dynamics given by (10.18), if

u = ū+ P̌T
x|yφ

where ū∈ Ū(x̄T φ̄), then Ḟ ≤ 0 for all t ≥ 0 and the resource locations asymptotically
track the cluster centers, that is, limt→∞ ȳ(t) = 0.

Proof. For ū∈ Ū(x̄T φ̄), it is straightforward to show that Ḟ given by (10.18) reduces
to Ḟ = −K0ȳT P̌yȳ− θ(ζ̄ ) for some θ(ζ̄ ) ≥ 0 and K0 > 0. Therefore Ḟ ≤ 0. Since
F(t) (which denotes the time-dependence of free energy F(ζ (t))) is bounded below
(from Theorem 10.2(1)) and Ḟ ≤ 0, this implies F(t)→ F∞ for some |F∞|<∞ as
t→∞. Thus,

∫ ∞

0
|Ḟ(τ)|dτ =−

∫ ∞

0
Ḟ(τ)dτ = F(0)−F∞ <∞

Therefore, since Ḟ is of bounded variation, we can deduce that limt→∞ |Ḟ(t)| = 0
from Lemma 10.1. Since

Ḟ =−K0ȳT P̌yȳ−θ(ζ̄ )⇒ K0ȳT P̌yȳ≤ |Ḟ | and P̌y is positive definite

with elements bounded away from zero (since min j{p(y j)} ≥ ν > 0), we have ȳ→ 0
as t→∞. ⊓⊔
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Clearly, resource velocities of the form u = ū + P̌T
x|yφ can take very large val-

ues near ȳ 6= 0. The following theorem emphasizes that this control design is not
conservative, that is, if there exists a control design that achieves Ḟ ≤ 0 without
growing unbounded near ȳ = 0, then there necessarily exists a bounded element
from Ū(x̄T φ̄)+ P̌T

x|yφ that guarantees Ḟ ≤ 0.

Theorem 10.4 (Lipschitz property of control). If there exists a û :
(
R2
)N+M →

(
R2
)M

such that û is Lipschitz at ζ̄ = 0 and

Ḟ = x̄T φ̄ + ȳT P̌y(û− P̌T
x|yφ )≤ 0

then u = ūS + P̌T
x|yφ is also Lipschitz at ζ̄ = 0, where

ūS(ζ̄ ) =−[K0 +
x̄T φ̄ +

√
|x̄T φ̄ |2 +(ȳT P̌yȳ)2

ȳT P̌yȳ
]ȳ ∈ Ū(x̄T φ̄). (10.20)

i.e., there exists a δ > 0 and a constant c0 such that ‖ūs(ζ̄ )‖ ≤ c0‖ζ̄‖ for ‖ζ̄‖ ≤ δ .

Theorem 10.4 can be proven in a manner analogous to the proof for Proposition
3.43 in [24]); see [29] for details. Theorems 10.3 and 10.4 are general in the sense
that they do not impose conditions other than smoothness on φ . We can obtain better
bounds on the control effort needed if we assume additional conditions on the cluster
dynamics. We use the following lemma, the proof of which can be found in [29].

Lemma 10.2. Let x ∈
(
R2
)N

and y in
(
R2
)M

satisfy

‖yc[i]− xi‖2

‖y j− xi‖2 ≤ δ < 1, ∀1≤ j ≤M, j 6= c[i]

where yc[i] is the unique closest resource location to xi, that is,

‖yc[i]− xi‖= min
1≤ j≤M

‖yk− xi‖ for 1≤ i ≤ N.

Then, there exists a constant k̄2 <∞ such that

‖P̌xP̌y|xP̌T
x|y− P̌xP̌c

y|xP̌cT
x|y‖< 3k2‖ȳ‖(1 + k2‖ȳ‖2 + k2

2‖ȳ‖2)

Theorem 10.5 (Bounded control). Assume the cluster dynamics are size-consistent,
that is

φ̄ T
x̄c ≤ 0 and

‖yc[i]− xi‖2

‖y j− xi‖2 ≤ δ < 1 ∀ j, 1≤ j ≤M, j 6= c[i],

where yc[i] is the unique closest resource location to xi. Consider the control law
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u(ζ̄ ) = P̌T
x|yφ +[K0 +

α +
√

α2 +(ȳT P̌yȳ)2

ȳT P̌yȳ
]ȳ,

where α = φ̄ T
x̄− φ̄T

x̄c and K0 > 0. Then, for some quadratic function c1(·),

lim
t→∞

ȳ = 0 and ‖u(ζ̄)‖ ≤ (2ν−1c1(‖ȳ‖)‖‖x‖+1)‖φ‖+(K0 + 1)‖ȳ‖

Therefore, if ‖φ‖,‖x‖ ≤ c2 <∞, then ‖u(ζ̄(t))‖ is bounded.

Proof. Note that Ḟ = φ̄T
x̄ + ȳT Py(u− P̌T

x|yφ) = φ̄T
x̄c + α + ȳT Py(u− P̌T

x|yφ). After
substituting for u, we obtain

Ḟ = φ̄ T
x̄c−K0ȳT P̌yȳ−

√
α2 +(ȳT P̌yȳ)2 ≤ 0

By following the same arguments as in the proof for Theorem 10.3, we can show
that limt→∞ ȳ = 0. From Lemma 10.2 we have

‖P̌xP̌y|xP̌T
x|y− P̌xP̌c

y|xP̌cT
x|y‖< ‖ȳ‖c1(‖ȳ‖)

for some quadratic function c1(·). Since α = xT (P̌xP̌y|xP̌T
x|y− P̌xP̌c

y|xP̌cT
x|y)φ , we have

|α‖ȳ‖/ȳT P̌yȳ| ≤ ν−1c1(‖ȳ‖)‖x‖‖φ‖

Further
‖u(ζ̄)‖ ≤ ‖φ‖+(2|α|‖ȳ‖/ȳT P̌yȳ)+ (1 +K0‖ȳ‖)

implies ‖u(ζ̄)‖ is bounded by

‖φ‖+2ν−1c1(‖ȳ‖)‖x‖‖φ‖+(K0 +1)‖ȳ‖≤ (2ν−1c1(‖ȳ‖)‖c2 +1)c2 +(K0 +1)‖ȳ‖

where ȳ→ 0 from above. ⊓⊔
⊓⊔

This design procedure provides great flexibility, with the free energy F viewed
as a control Lyapunov function and u designed to make Ḟ ≤ 0. Alternative com-
putationally efficient control laws can be devised by exploiting the properties of Γ .
For instance, we can guarantee exponential convergence of ȳ→ 0 by appropriately
choosing the function θ(ζ̄ ) in the control design [29].

Note that the size-consistency assumption on cluster dynamics is required only
in the interim period when resource locations are far from the cluster centers (i.e.,
when ȳ 6= 0). Once the resource locations track the cluster centers, these assumptions
are not required, and instead monitoring cluster splits is required.
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10.3.3 Cluster Evaluation

As the resource locations begin to track the cluster centers, cluster evaluation is
completed based on the following decision choices.

Splitting: The decision to split can be enforced when the parameter β satisfies the
condition

β−1 = 2λ max(Cx(tc)|y j(tc))

If time is fixed at t = tc, this splitting condition implies that y is at a local maxima
(or inflection point) of F (i.e., the Hessian of F is no longer positive definite).

The set of resource locations after splitting is determined by the same procedure
used as in the static case described in [28]. The new locations are denoted by

ynew = qsplit(y)

Splitting does not pose problems for the dynamic implementation of the algorithm
as the computation time to determine qsplit(y) is negligible compared to computation
of u(t).

Tracking: At time t if y j,1 ≤ j ≤ M, are at the cluster centers and the parameter
β does not satisfy the splitting condition, then one can continue to track the cluster
centers by assigning y j(t) = ∑i p(xi(t)|y j(t))xi(t). Alternatively, one can choose to
improve coverage resolution by increasing cooling rates, eventually leading to the
splitting condition being satisfied, resulting in finer clusters and therefore higher
resolution.

10.4 Scalability of the DME Algorithm

The framework presented in this chapter aims at avoiding local minima. As a conse-
quence the computations are global, or centralized, in the sense that the computation
of each resource location uses the values of all the site locations. However, the con-
tribution of distant site locations becomes progressively smaller as the parameter β
is increased. In fact, the partitions are hard as β →∞ and consequently the contri-
bution of site locations that are not nearest neighbors goes to zero. In this sense, the
computation of resource locations changes from being truly global to truly local, or
distributed, as β is increased from zero to infinity.

In the case of static sites, we have exploited this tendency toward distributedness
to develop a scalable algorithm that provides a close approximation to the original
algorithm. The basic idea is straightforward: quantify and exploit inherent cluster
separations based on cluster interaction information, then apply the MEP-based al-
gorithm separately to each cluster. This approach leads to a hierarchical application
of this algorithm. More specifically, at each phase transition, we compute the level
of interaction between clusters by
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ε ji = ∑
x∈Ri

p(y j|x)p(x), (10.21)

which represents the level of interaction between sites in cluster Ri with cluster
R j. We then determine subsets of strongly interacting clusters based on these ε-
values and apply the DA to each subset individually, ignoring the other clusters.
Obviously the trade-off in this is that the resulting distortions will be larger than in
the original algorithm. We have shown we can bound the difference in the resulting
cluster centers found by the scalable algorithm as follows:

|yi− ŷi| < ε i

(
1−∑x∈Ri

p(x)

1− ε i ∑x∈Ri
p(x)

)
with ε i = ∑

j 6=i

ε i j, (10.22)

where yi represent the cluster center for cluster Ri determined from the original DA
algorithm, and ŷi represent the cluster center for cluster Ri determined from the
scalable algorithm.

In simulations on data sets containing from 5000 to 15,000 static sites, the scal-
able algorithm has converged to a solution approximately six to seven times faster
on average than the DA algorithm, with an increase in the final distortion value ob-
tained of only about 5%. On data sets containing from 15,000 up to 50,000 static
sites, the scalable algorithm converges to a solution where the original DA algorithm
fails; see [28] for further details.

To extend this approach to the dynamic setting, we first note that clusters can
interact even when β values are high, due to site dynamics. Thus we propose to
monitor values of the norm of the Hessian ∂ 2F/∂y2 and estimate the effective radius
around each cluster center y j, beyond which the site locations can be ignored.

10.4.1 Incorporating Scalability into the Cost Function

An additional approach for improving scalability in our DME algorithm is to con-
sider incorporating computational cost into the algorithm’s objective function. More
specifically, we consider computing the association weights p(xi,y j) and resource
locations y j such that the entropy term

H(x,y) =−∑
j
∑

i
p(xi,y j) log(p(xi,y j))

is maximized subject to constraining the distortion, or coverage cost, as before by
D0, with

D0 = ∑
j
∑

i
p(xi)p(y j|xi)d(xi,y j)

and also constraining the cluster interaction and the computational cost by values
CI and CC , respectively, where
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CI = ∑
j

ε jid(xi,y j)Mi j, with Mi j =

{
0 xi ∈ R j

1 xi 6∈ R j
(10.23)

and
CC = ∑

j
ε i jN

2
j , with N j = ∑

i
(1−Mi j). (10.24)

That is, we now solve the modified Lagrangian

max
y j ,p(y j|xi)

H−β 1D0−β2CI −β 3CC (10.25)

To further improve tractability of this algorithm, we consider a relaxation of the
problem where Mi j and N j are approximated by the differentiable functions

Mi j = 1− e
− d(xi,y j )

σ j and N j = ∑
i

e
− d(xi,y j)

σ j . (10.26)

Implementation and simulations using these approaches are ongoing.

10.5 Simulations

In this section, we present simulation results for a variety of data sets with different
underlying dynamics. These test cases are specifically designed to highlight key fea-
tures of our DME framework and to allow for performance analysis and discussion.

10.5.1 The Basic Algorithm

We summarize in the following outline the main steps and flow of the the algorithm.
This implementation applies to the basic version of the algorithm, having no external
user-based directives:

• Step 0: Initialize the algorithm: t = t0, β = 0, and u = 0
• Step 1: Determine the resource locations (10.9) together with the association

probabilities (10.7)
• Step 2: Simulate motion of sites xi under (10.1) and determine resource velocities

from (10.1) for time interval ∆t
• Step 3a: If ȳ = 0, then

– Evaluate phase transition condition:
· Satisfied:

· If more resolution required, split y j, redistribute weights, determine
new y j values and return to Step 2; otherwise check stopping-time
criteria and exit if met, else return to Step 2

10 Dynamic Coverage and Clustering: A Maximum Entropy Approach 235
     irmgn.ir



· Not satisfied:
· If more resolution required, increase β and return to Step 2; otherwise

set y j to respective centroids and return to Step 2

• Step 3b: If ȳ 6= 0 then compute control u using (10.20) and return to Step 2

All simulations were carried out in MATLAB. For these simulations the dynamics
in (10.1) were completed by discretizing using a fourth-order Runge–Kutta method
(RK-4) [2]. In the RK-4 method, the error per step is O((∆t)5), while the total
accumulated error is O((∆ t)4). The time steps were chosen so that the solution
converges. Note that the time required to compute qsplit(y) is comparable to that
required to compute u(t).

10.5.2 Natural Cluster Identification and Tracking

In this primary simulation, we use a data set with 160 mobile sites. A velocity field
φ(t,x) is assigned to each of the mobile sites such that natural clusters emerge within
8 seconds.
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Fig. 10.3 Simulation results showing cluster identification and tracking. Snapshots (a), (b), (c) and
(d) show the locations of mobile sites xi,1≤ i≤ 160 (shown by squares) and resources y j,1≤ j≤
M (shown by diamonds) at various phase transition instances. All sites are initially concentrated at
the center of the domain area and then slowly drift apart. Four natural clusters emerge at the end
of the time horizon, shown in (d).

236 C. Beck et al.

     irmgn.ir



0 2 4 6 8
0

800

Time

F
re

e 
E

ne
rg

y

1 2 3 4 5 6
0

100

200

300

Dataset

C
om

pu
ta

tio
n 

tim
e 

(s
ec

)

 

 

Frame-by-frame method
Proposed algorithm

(a) (b)

0 5 10
0

20

40

60

Time

D
is

to
rt

io
n

Frame-by-Frame
Proposed algorithm

1 2 3 4 5 6

0

1

2

3

4

5

Dataset

%
 d

iff
er

en
ce

 in
 D

is
to

rt
io

n

(c) (d)

Fig. 10.4 (a) Free energy F with respect to time. The control value u ensures that dF/dt ≤ 0.
Sharp decreases in F are due to phase transitions. Progressively decreasing free energy results in
improved coverage and tracking throughout the time horizon. (b) Comparison of the computation
times for the frame-by-frame approach and the DME algorithm. (c) Comparison of the distortion
achieved by the frame-by-frame method and the proposed framework. (d) Percentage error in final
distortion achieved by the proposed DME algorithm versus the frame-by-frame method.

The algorithm is initiated with one resource placed at the centroid of the sites (at
t = 0) (a diamond denotes this location and squares represent the sites, Fig. 10.3(a)).
As the site dynamics evolve, the site locations move according to the equation
ẋ = φ (x,t). The DME algorithm progressively updates the association probabilities
and resource locations, and determines control values (i.e., the resource velocities
from (10.20)) in order to track cluster centers. Figures 10.3(b), (c) and (d) show
the locations of the sites and the resources in the interim instants. The number of
resource locations increases progressively due to successive phase transitions, and
as seen in the figure, the resource locations identify and track natural clusters in the
underlying data. At the end of the time horizon, all natural clusters are identified.
The algorithm successfully avoids several local minima and provides progressively
better coverage. Figure 10.4(a) shows a plot of the coverage function F with respect
to time. Note that at each phase transition, there is a sharp decline in F . This decline
is due to the fact that at every phase transition, one or more resource locations are
added, which results in lower free energy, thereby providing better coverage.

Depending on the distribution of the underlying data, the DME algorithm is five
to seven times faster than the frame-by-frame method. A comparison of the instan-
taneous distortion value ∑i pi min j d(xi,y j) obtained by the two algorithms is pre-
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sented in Fig. 10.4(c). The proposed algorithm identifies and tracks the clusters
hierarchically such that the distortion steadily decreases, with sharp decreases at
splits. As seen in the figure, the frame-by-frame method for the same number of re-
sources achieves slightly lower distortion, but with frequent spikes due to the spatio-
temporal effects. Moreover, the frame-by-frame method uses five times the compu-
tation time required for the proposed algorithm. Figure 10.4(d) shows a comparison
of the final distortion achieved by the proposed algorithm and the frame-by-frame
method (for the same time step and same number of resources). As is seen in the
figure, the proposed algorithm achieves a distortion similar to the frame-by-frame
approach (within 0.5% to 4.3%), however it uses considerably less computation
time as shown in (b).

In the absence of spatio-temporal smoothening, the clustering solutions obtained
at two successive time instants might be considerably disparate, even though the
number of natural clusters in the data set remains the same. Figure 10.5 shows the
clustering solution obtained by the frame-by-frame approach at two successive time
instants. Three clusters are identified by the algorithm at each instant, but at con-
siderably different spatial locations. This occurs because no information from the
previous clustering solution is used for determining the solution at the next time in-
stant. On the other hand, the proposed framework overcomes this problem by using a
smooth control value everywhere except during cluster splits via phase transition. In
order to speed up the frame-by-frame approach, we increase the time step between
successive frames. During such an implementation, the resource locations obtained
at the previous time instant are used in the interim between successive frames. This
results in a clustering solution that deteriorates in the interim because of the lack
of new information. Figures 10.5(c) and (d) show the distortion obtained by a three
fold and six fold increase in the time steps. As is seen in the figures, the distortion
obtained from the frame-by-frame approach deteriorates considerably with respect
to the proposed algorithm. Note that even for a six fold increase in the time step, the
computation time for the frame-by-frame is slightly higher than that of the proposed
algorithm. In most of the applications, such a phenomenon would not be desirable.

Once natural clusters are identified and tracked, the user may desire higher res-
olution clustering and/or simultaneous tracking. User-based directives are easily in-
corporated in our DME framework, providing flexibility in the modes of operation.
Higher resolution clusters can be achieved by increasing the annealing parameter
value until the phase transition condition is satisfied and the eventual splitting of
resources is obtained.

10.6 Ongoing Work and Conclusions

In this section we discuss ongoing work and further extensions of the framework
presented herein.
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Fig. 10.5 (a) and (b): Clustering results from two successive frames using the frame-by-frame ap-
proach. In both instances, three resource locations were identified by the algorithm, but at consid-
erably different positions. Such a solution violates the spatio-temporal requirement of the dynamic
clustering algorithm. This happens because none of the clustering information from previous frame
is employed in order to determine the solution at future frames. (c) and (d): Comparison of dis-
tortion obtained by the proposed algorithm and the frame-by-frame approach under different time
steps. (c) Proposed algorithm : ∆t = 0.08 s, frame-by-frame approach: ∆ t = 0.24 s. (d) Proposed
algorithm : ∆ t = 0.08 s, frame-by-frame approach: ∆ t = 0.48 s.

10.6.1 General Extensions of the Coverage Problem

Constraints on resources: The resources in the framework presented are assumed
to be identical. However, depending on the underlying problem domain, these re-
sources may be heterogeneous, where different constraints apply to different re-
sources; for example, vehicles may be of different sizes with different coverage
capacities. Resources can be made nonidentical in our framework by introducing
weights λ j to each resource location y j . This interpretation yields a modified free
energy function,

F =− 1
β ∑

i
pi log∑

j
λ je

−β d(xi,y j). (10.27)

Constraints on resources are implemented by specifying constraints on λ j. For
example, constraining the λ j by constants Wj yields resource locations that have
weights in the same ratios as {Wj}. More details on this formulation for static prob-
lems in the context of facility location, drug discovery and vector quantization are
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presented, respectively, in [23, 28, 21]. The same formulation easily extends to the
dynamic case, where static constraints can be incorporated by redefining the free en-
ergy in (10.27), and minimizing the appropriate Lagrangian L = F +∑ j µ j(λ j−Wj)
with respect to {y j} and {λ j}.

Inertial forces in vehicle dynamics: In this chapter, we have focused on tracking
of cluster centers when velocity fields (one state per direction for each vehicle) are
given for sites. Procedures that are applicable when higher order (i.e., multiple-
state) differential equations are given are presented in [34]. For example, in the
context of vehicle systems, the dynamics of autonomous mobile agents are often
controlled by thrust actuators, the control term being the amount of thrust in each
direction. The corresponding model for a domain with N mobile agents becomes
xi = [ξ i η i]

T ∈ R2 and M resource locations y j = [ρ j ω j]
T ∈ R2 as before, whose

dynamics are now given by

ẍ(t) = ϒϒϒ (x(t), ẋ(t),y(t), ẏ(t),t), x(0) = x0, ẋ(0) = ẋ0, (10.28)

ÿ(t) = u(t), y(0) = y0, ẏ(0) = ẏ0. (10.29)

Our task is to determine the accelerations (ÿ) for the M mobile resources such that
they track cluster centers. However by writing the above second order differential
equations for each vehicle into first order vector differential equations, these equa-
tions take the same form as (10.1), albeit with additional algebraic structure. Under
this scenario, the Euclidean distance metric is of the form

d(xi,y j) = (xi− y j)
2 +θ(ẋi− ẏ j)

2,

where θ is a constant. Choosing high values of θ thus gives relatively more impor-
tance to velocities and hence yields cluster centers for instantaneous headings (see
[34]).

10.6.2 Estimating Data Dynamics

In the framework presented, the velocity fields φ of sites are assumed to be known.
In the case of noisy dynamics, where φ is given by perturbations n(t) about a nomi-
nal function φ̄ , that is φ = φ̄ (x,y,t)+ n(t), and where the measurements of site and
resource locations are noisy, control designs based on estimated values of (x,y) have
provided satisfactory performance. This is primarily due to the fact that the shapes
of the Gibbs distribution functions are insensitive to slight perturbations in x and
y. When site dynamics are completely realized by velocity fields, if these fields are
not known a priori, we can estimate them using system identification methods, and
design u(t) based on the estimated fields. The inherent robustness in the algorithm
due to the properties of the Gibbs distribution again yield satisfactory performance.
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10.6.3 Robustness to Modeling Uncertainties

The effect of noisy channel transmissions can also be accommodated in our frame-
work, by modifying the instantaneous distortion term so that

D̃ = ∑
i

∑
j

pi p(y j|xi)d′(xi,y j)

where d′(xi,y j) reflects the probability of the event that xi was actually sent given
that the received message is interpreted as xk.

Our DME framework can address robustness issues to a variety of transmission
uncertainties. We can accommodate resource-dependent site-location uncertainties,
for example, where the probability of receiving the location xk when the location
xi is sent now depends on the receiver at the resource y j . Additionally, transmission
errors in resource locations can also be addressed; this case is analogous to the noisy
vector quantization problem addressed in [21].

We can also address communication link failures; to do so, we introduce a binary
random variable χ i j ∈ {0,1}, with a given probability distribution pχ i j

, where χ i j =
1 (or 0) implies that the ith site is (or is not) in communication with the jth resource.
Again, we modify the instantaneous distortion term such that

D̂ = ∑
i

∑
j

pip(y j|xi)pχ i j
(χ i j)χ i jd(xi,y j) (10.30)

Appending the entropy to include the link failure probability distribution gives Ĥ =
−∑i ∑ j pi p(y j|xi)pχi j

(χ i j) log p(y j|xi), and the association probabilities then take
the form

p(y j|xi) =
exp(−β (∑χ i j

pχi j
(χ i j)χ i jd(xi,y j)))

Zi
(10.31)

where Zi = ∑
j

exp(−β (∑
χ i j

pχ i j
(χ i j)χ i jd(xi,y j))) (10.32)

The instantaneous free energy is then rewritten as

F̂ =− 1
β ∑

i
pi log∑

j
[−β (∑

χ i j

pχ i j
(χ i j)χ i jd(xi,y j))] (10.33)

This term can now be used as a metric for instantaneous coverage under link failures.
An analysis similar to that of the proposed algorithm in Sec. 10.2 can be employed
to obtain dynamic clustering.
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10.6.4 Conclusions

In this chapter, we proposed the dynamic maximum entropy (DME) framework for
formulating and solving the dynamic coverage problem. As shown in the simula-
tions, the proposed framework resolves both the coverage as well as the tracking
aspects of the dynamic coverage problem. Using a control-theoretic approach to
determine the velocity field for the cluster centers, we achieve progressively better
coverage with time, which is shown to be five to seven times faster than the frame-
by-frame method. The hierarchical aspect of the proposed algorithm enables us to
identify natural clusters in the underlying data and characterize the notion of cluster
resolution. Notions of coverage and clusters based on the MEP naturally allow for
quantification of inter cluster and intra cluster dynamics, and greatly facilitate the
simultaneous design process for the coverage and tracking objectives of the under-
lying problems.
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Chapter 11
Transverse Linearization for Underactuated
Nonholonomic Mechanical Systems with
Application to Orbital Stabilization

Leonid B. Freidovich and Anton S. Shiriaev

Abstract We consider a class of mechanical systems with an arbitrary number of
passive (nonactuated) degrees of freedom, which are subject to a set of nonholo-
nomic constraints. We assume that the challenging problem of motion planning is
solved giving rise to a feasible desired periodic trajectory. Our goal is either to ana-
lyze orbital stability of this trajectory with a given time-independent feedback con-
trol law or to design a stabilizing controller. We extend our previous work done for
mechanical systems without nonholonomic constraints. The main contribution is an
analytical method for computing coefficients of a linear reduced-order control sys-
tem, solutions of which approximate dynamics that is transversal to the preplanned
trajectory. This linear system is shown to be useful for stability analysis and for de-
sign of feedback controllers orbitally, exponentially stabilizing forced periodic mo-
tions in nonholonomic mechanical systems. We illustrate our approach on a standard
benchmark example.

11.1 Introduction

The problem of orbital stabilization of periodic motions in mechanical systems is
challenging. However, it naturally appears in various applications. It is well known
that mathematically rigorous analysis of orbital stability and design of orbitally sta-
bilizing feedback controllers can be based on the properties of the dynamics that
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is transverse to the orbit [18, 8, 2, 14]. Defining such dynamics is equivalent to in-
troducing special coordinates in a vicinity of a periodic motion [18] and has a nice
geometric interpretation, known as a moving Poincaré section [10].

We have recently shown that, under some mild conditions, for mechanical sys-
tems with various controlled and uncontrolled forces such transverse dynamics can
be computed analytically [15, 13, 14, 6]. Below, we derive an analogous result for a
large class of underactuated nonholonomic mechanical systems.

11.2 Class of Systems and Problem Formulation

We follow the formulation of nonholonomic dynamics given in [11]; see also [1, 4,
3, 9] and references therein.

11.2.1 Dynamics of Underactuated Nonholonomic Systems

We consider a class of mechanical systems, dynamics of which can be described by
the Euler–Lagrange equations with nonholonomic constraints:

M(q) q̈ +C(q, q̇) q̇+G(q) = J(q)T λ +B(q)u,

J(q) q̇ = 0, u = R(q, q̇)+ Q(q, q̇)v,
(11.1)

where q ∈ Rn and q̇ ∈ Rn are vectors of the generalized coordinates and velocities;
M(q) is a positive definite matrix of inertia; λ ∈Rk is a vector of Lagrange multipli-
ers related to the constraints defined by a matrix J(q) ∈ Rk×n of constant full rank
k < n. The multiplier λ can be interpreted as a vector of (normalized) amplitudes of
the reaction forces necessary for keeping the k not integrable1 relations J(q) q̇ = 0
invariant along the solutions; u∈Rm is a vector of control inputs with 0≤m≤ n−k;
R(q, q̇) represents the preliminary feedback torque; the matrix Q(q, q̇) completes the
definition of a preliminary feedback transformation from u to v, it is not necessarily
square and may change rank; B(q) is a matrix function of constant full rank m; G(q)
represents the generalized forces due to gravity; and C(q, q̇)q̇ is quadratic in q̇ and
describes Coriolis and generalized centrifugal forces.

The initial conditions for (11.1) are assumed to satisfy J(q) q̇ = 0 which leads to
appropriate definitions of solutions that stay on the (2n− k)-dimensional submani-
fold of the state space

M = {(q, q̇) : J(q) q̇ = 0} (11.2)

and the stability of the solutions; see e.g. [4, 3].

1 If one of the k relations were integrable, it would be called holonomic while q would be a vector
of not generalized but extensive coordinates. The lack of integrability is actually not essential for
our derivations. However, we keep this assumption for the sake of terminological consistency.
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Now, suppose that there exists a nontrivial periodic solution of (11.1) with v≡ 0,
along which

q = q⋆(t) = q⋆(t +T ), q̇ =
d
dt

q⋆(t) =
d
dt

q⋆(t +T) (11.3)

with some T > 0. The task is to analyze the orbital stability of this solution under a
particular choice of time-independent state feedback control law for v and to provide
guidelines for designing stabilizing controllers.

As in our previous work, see e.g., [13, 14], we will use a special time-independent
reparametrization of the desired orbit, known as virtual holonomic constraint; see
[19] and references therein.

11.2.2 Target Periodic Motion via Virtual Holonomic Constraints

We assume that over the period the target solution (11.3) can be represented as

q⋆(t) = Φ
(
θ ⋆(t)

)
, q̇⋆(t) =

dΦ(θ)

dθ

∣∣∣∣
θ=θ⋆(t)

θ̇ ⋆(t), (11.4)

where the smooth vector function Φ(θ) defines the desired synchronization among
the generalized coordinates, and θ ⋆(t) may coincide with the target time evolution
of one of the generalized coordinates.

Such a reparametrization is always possible along a finite number of pieces of the
trajectory. A generalization for the case when a single virtual holonomic constraint
for the whole period does not exist or is hard to find can be easily made along the
lines of [6], but it would lead to a notion of hybrid transverse linearization, which is
more complex. So, for simplicity, we restrict ourselves to the one-piece case.

11.2.3 Problem Formulation

Our goal is to define a procedure for computing a T -periodic linear control system

d
dτ

X =A(τ)X +B(τ)V (11.5)

with X ∈ R2 n−k−1 and V ∈ Rm such that its solutions, being appropriately initi-
ated, approximate that part of the solution—i.e., the solution of the dynamics in Eq.
(11.1)—that is transversal to the target periodic solution (11.3) defined for v≡ 0.

As known, this linear system, if found, should allow us to analyze orbital stability
of the nonlinear system and to design orbitally stabilizing feedback control laws.
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As in our previous work [14], the procedure consists of finding new 2n− k− 1
independent state variables that vanish along the target motion whenever v ≡ 0,
computing their dynamics and finding its linearization.

To compute the transverse linearization (11.5) for (11.1), we introduce a mov-
ing Poincaré section [10] following the derivations presented in [14]. This will be
a family of the surfaces orthogonal to the target periodic motion. Linearizing the
dynamics projected onto these surfaces allows one to obtain a family of linear, time-
varying system solutions. These allow one to approximate the change in the distance
between the orbits of (11.1) and the target orbit defined by (11.3) for an arbitrary
choice of v.

Below, we propose two approaches. The first relies on an order reduction proce-
dure, which can be found in many references; see e.g., [11, 4]. It is applicable for
quite a restrictive class of nonholonomic systems. However, the problem of planning
a feasible motion might be easier to solve in the case when the reduction of the order
is possible. The second approach is more general and does not assume knowledge
of a order reduction transformation, which for a particular system may be definable
only locally.

11.3 Transverse Linearization with a Preliminary Reduction

Let us first try to eliminate invariants from our description, thereby obtaining a sys-
tem of a lower dimension.

11.3.1 Reduced-Order Dynamics

To simplify the subsequent calculations, one might be able to rewrite the system
(11.1) in coordinates for the reduced state space of dimension 2n− k. There are
various procedures that can be used to eliminate the vector of Lagrange multipliers
λ . For example, following [4], suppose that the manifoldM in (11.2) contains a
neighborhood of the desired periodic trajectory (11.3) where the equation J(q) q̇ = 0
can be written as

J(q) q̇ = Ja(q) q̇a + Jc(q) q̇c = 0 (11.6)

with q = [qa; qc] and Jc(q) being a nonsingular k× k matrix. Then, one can define a
smooth matrix function

Jac(q) =

[
I(n−k)×(n−k)

−
(
Jc(q)

)−1
Ja(q)

]
, (11.7)

columns of which span the null space of J(q), and, by substituting the identities

q̇ = Jac(q) q̇a, q̈ = J̇ac(q) q̇a + Jac(q) q̈a (11.8)
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into (11.1) multiplied by Jac(q)T , obtain the following reduced-order dynamics [4]:

Mac(q) q̈a +Cac(q, q̇a) q̇a +G(q) = Bac(q)u,

q̇c = Jca(q) q̇a, u = Rac(q, q̇a)+ Qac(q, q̇a)v,
(11.9)

where Jca(q) = −
(
Jc(q)

)−1
Ja(q), the matrix Mac(q) = Jac(q)T M(q)Jac(q) is pos-

itive definite, the vector Cac(q, q̇a) q̇a = C (q,Jac(q) q̇a) Jac(q) q̇a + M(q)Ṁ(q) q̇a is
quadratic in q̇a and the rank of Bac(q) = Jac(q)T B(q), which is less than or equal to
n− k, defines the number of independently actuated degrees of freedom.

Let us assume that v∈Rm and rank {Bac(q)}= rank {B(q)}= m. If n−k = m, the
system is called fully actuated. Otherwise, it is called underactuated, and n− k−m
is the nonholonomic underactuation degree.

In the rest of the chapter, we consider only the challenging underactuated case,
i.e., we assume that

n− k−m≥ 1

It is of interest to note that when the simple reduction procedure described above
is not applicable, it is often possible to introduce so-called quasicoordinates qa [11,
Chapter III] to obtain the relation (11.8) and, consequently, the reduced-order dy-
namics in the form of (11.9) and with similar properties. So, for the rest of this
section let us assume that such a transformation is available and we do have an
equivalent description (11.9), called in [4] as the normal form equations for non-
holonomic control systems.

Let us assume that the vector of virtual holonomic constraints in (11.4) is parti-
tioned as

Φ(θ ) = [Φa(θ ); Φc(θ )]

according to q = [qa; qc] and that θ ⋆(t) coincides with the desired time evolution
of one of the components of qa. Substituting q = Φ(θ ) into the second equation in
(11.9), one obtains the identity

Φ ′
c(θ ) = Jca

(
Φ(θ )

)
Φ ′

a(θ)

which must be satisfied.
On the other hand, following [16], multiplying the first equation in (11.9) by an

annihilator B⊥ for Bac(q) and substituting q = Φ(θ ), one obtains n−m− k differ-
ential equations

α j(θ ) θ̈ +β j(θ ) θ̇ 2
+ γ j(θ ) = 0, j = 1, . . . ,n−m− k (11.10)

with coefficients as defined in [16, 14], admitting θ = θ ⋆(t) as a common solution.
Moreover, each of these equations with nonvanishing α j(θ ) admits the conserved
quantity [17]
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I j = θ̇ 2−Ψj
(
θ ,θ ⋆(0)

)
θ̇ 2

⋆(0)+
∫ θ(t)

θ⋆(0)

2Ψj(θ ,s)γ j(s)

α j(s)
ds

Ψj(a,b) = exp

{
∫ b

a

2β j(τ)

α j(τ)
dτ
}

,

(11.11)

which is zero for θ = θ ⋆(t) and is equivalent to the Euclidean distance between a
solution of (11.10) and the target solution [14].

Introducing the change of coordinates (q, q̇)↔ (θ , θ̇ ,ya,yc, ẏa) defined by

ya = (n− k− 1) components of {qa−Φa(θ )} ,

yc = qc−Φc(θ ), y =
[
ya; yc

]
∈ Rn−1

(11.12)

one can easily rewrite (11.9) as

α j(θ ) θ̈ + β j(θ ) θ̇ 2
+ γ j(θ ) = g0(θ , θ̇ ,y, ẏa,v),

ÿa = ga(θ , θ̇ ,y, ẏa,v),

ẏc = gc(θ , θ̇ ,y, ẏa)

(11.13)

such that the right-hand sides are zeros whenever θ = θ ⋆(t), θ̇ = θ̇ ⋆(t), y = 0, ẏa = 0
and v = 0.

Introducing the vector of transversal coordinates

x⊥ = [I j; y; ẏa] ∈ R2n−k−1 (11.14)

with the first component defined by (11.11), it is possible to make another change
of coordinates (θ , θ̇ ,ya,yc, ẏa)↔ (ψ j,x⊥) without implicitly defining the variable
ψ j that characterizes the dynamics along the target motion. The first equation in
(11.13) can be rewritten as [15]

İ j =
2 θ̇

α j(θ )

(
g0(θ , θ̇ ,y, ẏa,v)−β j(θ) I j

)
(11.15)

It is left to linearize the rewritten dynamics with respect to the components of x⊥.
The only nontrivial part here is obtaining the coefficients for the variations with
respect to I j; the following formula [5] is useful:

g(θ , θ̇ ,y, ẏa,v) =
∂g
∂ I j

I j +
∂g
∂ y

y +
∂g
∂ ẏa

ẏa +
∂g
∂v

v + . . . ,

∂ g
∂ I j

:=
θ̇

∂g

∂ θ̇
− θ̈

∂g
∂θ

2
(

θ̇ 2
+ θ̈ 2

)

∣∣∣∣∣∣∣∣θ=θ⋆(τ)

θ̇=θ̇⋆(τ)

θ̈=θ̈⋆(τ)
y=0, ẏa=0

(11.16)
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where τ defines the closest point to (θ , θ̇) on the target trajectory and . . . denotes
small higher-order terms with respect to the distance to this point.

Hence, to compute the coefficients of the linearization, one needs to obtain a few
partial derivatives and to know θ⋆(t), together with its two derivatives, that can be
computed solving (11.10). The result is (11.5) with

B(τ)=

[
∂g0

∂v
; 0m×(n−k−1); 0m×k;

∂ga

∂v

]
θ=θ⋆(τ)

θ̇=θ̇⋆(τ)

θ̈=θ̈⋆(τ)
y=0, ẏa=0

,

A(τ)=




2θ̇
α j

(
∂ g0

∂ I j
−β j

)
2θ̇
α j

∂g0

∂y
2θ̇
α j

∂ g0

∂ ẏa

0(n−k−1)×1 0(n−k−1)×(n−1) I(n−k−1)

∂gc

∂ I j

∂gc

∂y
∂gc

∂ ẏc
∂ga

∂ I j

∂ga

∂y
∂ga

∂ ẏa




θ=θ⋆(τ)

θ̇=θ̇⋆(τ)

θ̈=θ̈⋆(τ)
y=0, ẏa=0

,

where, e.g., the first row in the matrices A(τ) and B(τ) is defined by (11.16) and
(11.15).

We show in Sec. 11.5 how to use the computed transverse linearization for sta-
bility analysis and for exponential orbital stabilization. Before that, let us propose a
more general approach for its computation.

11.4 Computation of a Transverse Linearization without a
Preliminary Reduction of Order

In case the partition of q that corresponds to (11.6) with nonsingular Jc(q) is not
known or does not exist, computing the transverse linearization as in the previous
section is not possible. However, there is another way. Differentiating the equation
of constraint one obtains

J̇(q) q̇+ J(q) q̈ = 0

while since M(q) is not singular

q̈ =−M(q)−1 (C(q, q̇) q̇ +G(q)− J(q)T λ −B(q)u)

Now, using the fact that J(q) is of full rank, one can obtain the explicit expression
for λ solving
(
J(q)M(q)−1J(q)T

)
λ + J̇(q) q̇ = J(q)M(q)−1(B(q)u−C(q, q̇)q̇−G(q)) (11.17)

and rewrite the system (11.1) in an equivalent form,
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M(q) q̈+Cλ(q, q̇) q̇+Gλ (q) = Bλ (q)u,

J(q) q̇ = 0, u = R(q, q̇)+ Q(q, q̇)v,
(11.18)

where the identity J(q) q̇ = 0 holds provided it is satisfied in the initial moment of
time.

It is easy to verify that the expression Cλ (q, q̇) q̇ is still quadratic in q̇, inheriting
this property from C(q, q̇) q̇ and J̇(q) q̇. As a result it is straightforward to follow the
derivations presented in [14], which are similar to the ones presented in the previous
section, taking

y = (n− 1) components of {q−Φ(θ)}
and

xe
⊥ = [I j; y; ẏ] ∈R2 n−1

and obtaining the extended transverse linearization

d
dτ

xe
⊥ =Ae(τ)xe

⊥ +Be(τ)V

It is clear that this system should have at least k uncontrollable states since there
are k conserved identities. They, in principle, can be obtained by linearizing the
identity J(q) q̇ = 0 expressed in terms of the components of xe

⊥ and computing an
appropriate change of coordinates that explicitly contain the conserved quantities.
Removing the corresponding extraneous states should allow us to obtain the trans-
verse linearization (11.5) of the correct dimension.

11.5 Orbital Stability and Stabilization

Let us illustrate how to use the computed transverse linearization (11.5) for analysis
of orbital stability and stabilization via design of a feedback controller. For simplic-
ity, we will do this only for the case where the reduction of order is possible.

11.5.1 Analysis of Orbital Stability

Suppose someone suggested a stabilizing feedback control law for the system
(11.1). It can certainly be expressed in terms of the new coordinates as a feedback
control law

v = k(θ , θ̇ ,y, ẏa) (11.19)

for the system (11.9).
The corresponding expression for V in (11.5) can be computed as

V = K(τ)X , (11.20)
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where

K(τ) =




θ̇
∂k

∂ θ̇
− θ̈

∂ k
∂θ

2
(

θ̇ 2
+ θ̈2

) ,

(
∂k
∂y

)T

,

(
∂k
∂ ẏa

)T




∣∣∣∣∣∣∣θ=θ⋆(τ)

θ̇=θ̇⋆(τ)

θ̈=θ̈⋆(τ)
y=0, ẏa=0

(11.21)

is obtained via linearization.
The transition matrix for the transverse linearization can be computed as follows:

X(T ) = Φ(T )X(0), (11.22)

where Φ(T ) is the end-point of the solution of the initial value problem

d
dτ

Φ =
(
A(τ)+B(τ)K(τ)

)
Φ, Φ(0) = I. (11.23)

Theorem 11.1. Suppose all the eigenvalues of the matrix Φ(T ) defined by (11.23)
are inside the open unit circle. Then, the periodic solution defined by q = q⋆(t) for
the system (11.1), (11.19) is exponentially orbitally stable.

Proof of this statement relies on the fact that Φ(T ) is a linearization of the
Poincaré first return map [12] computed on the first surface of the explicitly de-
fined Poincaré section, and it follows the ideas of the proof of the main result in
[14].

It appears, however, that suggesting a feedback design technique for (11.19) is
more involved.

11.5.2 Orbital Stabilization

The obvious idea is to start with designing a stabilizing feedback controller for
(11.5) in the form of (11.21). This is a nontrivial task, although it is clearly much
simpler than designing a stabilizing regulator for the system (11.1) directly.

In [5], a time-independent law in the form of (11.21) is computed through a
numerical search for a planar three-link model of a walking robot with a torso of
underactuation degree one. If this is done, one can take

v = K
[
I(i); y; ẏa

]

and use Theorem 11.1 to conclude orbital exponential stability.
However, if a nonconstant gain K(τ) is available for stabilization of the lineariza-

tion, suggesting a formula for (11.19) to recover (11.21) is a nontrivial task. A pos-
sible way to proceed is to use the Poincaré section as in [14, 15] or as defined below:
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U(τ) =
{
(q, q̇) :

(
q−q⋆(τ)

)T
q̇⋆(τ)+

(
q̇−q̇⋆(τ)

)T
q̈⋆(τ)=0

and ‖q−q⋆(τ)‖2 +‖q̇− q̇⋆(τ)‖2 ≤ ε
}⋂M

(11.24)

where the manifoldM is defined in (11.2) and ε > 0 is small enough to ensure that
all U(τ) are disjoint.

With such a tabular neighborhood at hand, we can formulate our main stabiliza-
tion result.

Theorem 11.2. Suppose all the eigenvalues of the matrix Φ(T ) defined by (11.23)
are inside the open unit circle. Then, the periodic solution defined by q = q⋆(t) for
the system (11.1) is exponentially orbitally stabilized by

v = K(τ)x⊥(t) = K(τ) [I j; y; ẏa] (11.25)

where τ is such that (q(t), q̇(t)) ∈U(τ) with U(τ) defined in (11.24).

The proof follows from re-examining the proof of Theorem 11.1. The key obser-
vation is that variation in τ resulting from variations in (q, q̇) restricted to keeping
a constant value of x⊥ are of the second order in magnitude with respect to the
components of x⊥.

11.6 Example—Steering of a Knife-Edge System without
Pushing

Here we illustrate how a transverse linearization can be computed for a standard
simple example of a knife-edge system.

11.6.1 Equations of Motion

Dynamics of an underactuated knife-edge system can be described in the form of
(11.1) as follows, see e.g. [4]

q̈1 = λ sin(q3) (11.26)

q̈2 =−λ cos(q3) (11.27)

q̈3 = u (11.28)

q̇1 sin(q3)− q̇2 cos(q3) = 0 (11.29)

where q1 and q2 denote the point of contact of the knife-edge system with the hori-
zontal plane, q3 is the heading angle and u is the steering torque.

254 L.B. Freidovich and A.S. Shiriaev

     irmgn.ir



The reduced-order dynamics in the form of (11.9) can be obtained by letting

qa = [qa1; qa2] = [q1 cos(q3)+ q2 sin(q3); q3],

qc =−q1 sin(q3)+ q2 cos(q3)

and it is given by ( see e.g. [4])

q̈a1 = −qa1 q̇2
a2 + qc u,

q̈a2 = u,

q̇c = −qa1 q̇a2

In the rest of the chapter, we would like to analyze or to stabilize a periodic motion
that exists in the open loop; so, we take

u = v, (11.30)

which implies that the system we deal with is

q̈a1 = −qa1 q̇2
a2 + qc v,

q̈a2 = v,

q̇c = −qa1 q̇a2

(11.31)

11.6.2 Target Periodic Solution

To obtain a virtual-holonomic-constraint description (11.4) of a periodic solution
that exists in the open loop, we substitute

qa1 = φ a(θ ), qa2 = θ , qc = φ c(θ ), v = 0

into (11.31) and obtain

(
φ c(θ)−φ ′

a(θ )
)

θ̈ −
(
φ a(θ )+ φ ′′

a (θ )
)
θ̇ 2

= 0,

θ̈ = 0,

φ a(θ) = −φ ′
c(θ )

Therefore, the coefficients for Eq. (11.10) are
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α1(θ ) = φ c(θ )+ φ ′′
c (θ ), α2(θ) = 1,

β 1(θ ) = φ ′
c(θ )+ φ ′′′

c (θ ), β 2(θ) = 0,

γ1(θ ) = 0, γ2(θ) = 0

Hence, the only possible periodic solution (of the second kind, i.e., θ̇ ⋆ is periodic)
is defined by

θ ⋆(t) = ω0 t + φ0

and
φ ′

c(θ)+ φ ′′′
c (θ )≡ 0, φ a(θ ) =−φ ′

c(θ)

We assume ω0 6= 0 and take

φ c(θ ) = a0 6= 0, φa(θ) = 0,

which results in a circular motion described in the original coordinates for (11.29)
as follows:

q1⋆(t) =−a0 sin(ω0 t +φ 0), q2⋆(t) = a0 cos(ω0 t +φ0),

q3⋆(t) = ω0 t + φ0, u⋆ = 0.
(11.32)

11.6.3 Orbital Stabilization

Note that with (11.32) we have reduced (11.11) to

I = θ̇2−ω2
0 (11.33)

and we should introduce the transversal coordinates (11.14), taking for (11.12)

ya = q1a, yc = qc−a0.

The system (11.31) in the new coordinates rewritten in the form (11.13) becomes

ÿa = −ya (I +ω2
0)+ (yc +a0)v,

θ̈ = v,

ẏc = −ya θ̇

and we obtain a time-invariant transverse linearization (11.5) with
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A=




0 0 0 0

0 0 0 1

0 −ω0 0 0

0 −ω2
0 0 0


 , B =




2ω0

0

0

a0




It is easy to verify that following the second approach by taking θ = q3, y1 = q1 +
a0 sin(θ) and y2 = q2− a0 cos(θ ), after straightforward computations, one obtains
the extended transverse dynamics

ÿ1 = −θ̇ (ẏ1 cos(θ )+ ẏ2 sin(θ))+ a0 v cos(θ ),

ÿ2 = θ̇ (ẏ1 cos(θ )+ ẏ2 sin(θ))+ a0 v sin(θ),

θ̈ = v,

0 = ẏ1 sin(θ)− ẏ2 cos(θ ),

which can be transformed into the same form since yc =−y1 sin(θ)+y2 cos(θ ) and
ya = y1 cos(θ )+ y2 sin(θ ) and so results in an equivalent linearization.

Since the pair (A,B) obtained is not controllable, exponential stabilization of the
circular motion (11.32) via a smooth feedback is impossible. It is not hard to verify
with similar calculations that allowing an additional control input that corresponds
to a pushing force would still result in an uncontrollable linearization. Note that it
was shown in [4] that it is not possible to stabilize the equilibria of the knife-edge
system (11.29) via continuous feedback by pushing and steering, and so the failure
to stabilize limit cycles is intuitively not surprising.

Dropping the uncontrollable equation for yc one obtains, for the nontrivial case
of ω0 6= 0 and a0 6= 0, the controllable pair

A2 =




0 0 0

0 0 1

0 −ω0 0


 , B2 =




2ω0

0

a0




for which it is not hard to design a constant-gain feedback control law exponentially
stabilizing the corresponding manifold that contains the desired motion. Note that
the final value of yc for the closed-loop system based on the corresponding constant-
gain controller depends on the initial conditions.

11.7 Conclusion

We have studied dynamics of underactuated nonholonomic mechanical systems in a
vicinity of a forced periodic solution that can be described via a single virtual holo-
nomic constraint. The main result is a systematic procedure for analytical computa-
tion of a transverse linearization, which can be used for orbital stability analysis and
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design of exponentially orbitally stabilizing controllers. The procedure is explained
in detail for a simplified case wherein the order of the system can be reduced via
an appropriate change of coordinates eliminating all the conserved quantities. Only
a suggestion on how to proceed in the general case is given. The technique is illus-
trated in an example.

References

1. Arnold, V.I., Kozlov, V.V., Neishtadt, A.I.: Mathematical Aspects of Classical and Celestial
Mechanics, vol. 3. Springer-Verlag, Berlin (1988)

2. Banaszuk, A., Hauser, J.: Feedback linearization of transverse dynamics for periodic orbits.
Systems and Control Letters 26, 95–105 (1995)

3. Bloch, A., Baillieul, J., Crouch, P., Marsden, J.: Nonholonomic Mechanics and Control.
Springer-Verlag, New York (2003)

4. Bloch, A.M., Reyhanoglu, M., McClamroch, N.H.: Control and stabilization of nonholonomic
dynamic systems. IEEE Trans. Automatic Control 37(11), 1746–1757 (1992)

5. Freidovich, L., Shiriaev, A., Manchester, I.: Stability analysis and control design for an un-
deractuated walking robot via computation of a transverse linearization. In: Proc. 17th IFAC
World Congress, pp. 10,166–10,171. Seoul, Korea (2008)

6. Freidovich, L., Shiriaev, A.: Transverse linearization for mechanical systems with passive
links, impulse effects, and friction forces. In: Proc. 48th IEEE Conf. Decision and Control
(CDC2009) / the 28th Chinese Control Conference, pp. 6490–6495. Shanghai, China (2009)

7. Freidovich, L.B., Robertsson, A., Shiriaev, A.S., Johansson, R.: Periodic motions of the Pen-
dubot via virtual holonomic constraints: Theory and experiments. Automatica 44(3), 785–791
(2008)

8. Hale, J.: Ordinary Differential Equations. Krieger, Malabar (1980)
9. Hussein, I.I., Bloch, A.M.: Optimal control of underactuated nonholonomic mechanical sys-

tems. IEEE Trans. Automatic Control 53(3), 668–682 (2008)
10. Leonov, G.: Generalization of the Andronov–Vitt theorem. Regular and Chaotic Dynamics

11(2), 281–289 (2006)
11. Neimark, J.I., Fufaev, F.A.: Dynamics of Nonholonomic Systems, vol. 33. A.M.S. Transla-

tions of Mathematical Monographs, Providence, RI (1972)
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Chapter 12
A Distributed NMPC Scheme without
Stabilizing Terminal Constraints

Lars Grüne and Karl Worthmann

Abstract We consider a distributed NMPC scheme in which the individual sys-
tems are coupled via state constraints. In order to avoid violation of the constraints,
the subsystems communicate their individual predictions to the other subsystems
once in each sampling period. For this setting, Richards and How have proposed
a sequential distributed MPC formulation with stabilizing terminal constraints. In
this chapter we show how this scheme can be extended to MPC without stabilizing
terminal constraints or costs. We show theoretically and by means of numerical sim-
ulations that under a suitable controllability condition stability and feasibility can be
ensured even for rather short prediction horizons.

12.1 Introduction

In this chapter we consider a distributed nonlinear model predictive control (NMPC)
algorithm for systems which are coupled via state constraints. NMPC is a controller
design method that relies on the online solutions of optimal control problems on
finite optimization horizons in each sampling period. In a distributed setting, the
solution of this optimal control problem is distributed among the individual systems.
This can be done in various ways (see [12, Chapter 6] or [15] for an overview). One
way is to formulate the optimization objective in a centralized way and to solve
this problem in a distributed way in each sampling period. The necessary splitting
of the optimization problem can be obtained in various ways which, under suitable
assumptions, guarantee that the performance of the distributed controller is similar
to that of a centralized controller; examples can be found, e.g., in [4] or [12, Chapter
6]. The drawback of this method—which is usually called cooperative control—is

Lars Grüne and Karl Worthmann,
Mathematical Institute, University of Bayreuth, 95440 Bayreuth, Germany,
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that it requires numerous information exchanges between the individual systems
during the iterative optimization procedure in each sampling interval.

A less demanding approach from the communication point of view is nonco-
operative control, in which some information from the other systems is taken into
account when a system performs its optimization but in which the optimization ob-
jectives of the individual systems are independent from each other. It is known that
for this setting a solution close to the central optimum can no longer be expected;
rather, the best one can get is a Nash equilibrium, see [12, Chapter 6]. However,
under suitable conditions the resulting closed loop may still be stable and maintain
the imposed coupling constraints. This is the situation we investigate in this chapter.
More precisely, we consider a specific noncooperative distributed NMPC algorithm
proposed by Richards and How [14, 13] in which each system sends information
about its predicted future states once in each sampling period. Via a suitable se-
quential ordering of the individual optimizations it is then ensured that the coupling
state constraints are maintained whenever the optimization problems are feasible,
i.e., when optimal solutions exist. Clearly, requiring a strict sequential order is a
drawback of this approach, which we will attempt to relax in future research. Still,
the numerical effort of this scheme is already significantly lower than for a central-
ized solution of the optimization problem; cf. the discussion after Algorithm 12.3,
below.

In a stabilization setting, the optimal control problem to be solved online in the
NMPC iteration usually minimizes the distance to the desired equilibrium. Often,
additional stabilizing terminal constraints and costs are imposed in order to ensure
asymptotic stability of the resulting closed loop. This means that the optimization
on the finite horizon in each sampling instant is performed over those trajectories
which—at the end of the optimization horizon—end up in the terminal constraint
set, which is typically a neighborhood of the equilibrium to be stabilized. These ter-
minal constraints also play a vital role for ensuring both stability and feasibility in
the scheme of Richards and How. In certain situations, however, imposing terminal
constraints has the significant drawback that rather long optimization horizons are
needed in order to ensure the existence of trajectories that end up in the terminal
constraint sets. Furthermore, stabilizing terminal constraints may have negative ef-
fects on the performance of the scheme; see, e.g., [6, Sec. 8.4]. As we will see in
the detailed description in Sec. 12.3, in the distributed setting the terminal constraint
formulation has the additional drawback that possible conflicts between the individ-
ual systems, i.e., violations of the coupling state constraints, have to be resolved in
an initialization step.

The contribution of this chapter is to give sufficient conditions under which we
can ensure stability and feasibility without stabilizing terminal constraints. In the
nondistributed setting, several approaches for this purpose have been developed,
e.g., in [5, 8, 7, 9]. Here, we use the approach developed in [8, 7], which relies
on an asymptoptic controllability assumption taking into account the stage cost of
the finite horizon optimal control problems. We will develop an extension of this
condition to the distributed setting and we will verify that this condition holds for a
simple test example of moving agents in a plane where the coupling constraints are
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formulated in order to prevent collisions between the agents. Numerical simulations
for this example illustrate that with this scheme stability can be achieved with short
optimization horizons and that this scheme allows us to resolve conflicts between
the individual systems once they become “visible,” i.e., at the runtime of the system
rather than in an initialization step.

The chapter is organized as follows. In Sec. 12.2 we describe the problem for-
mulation and in Sec. 12.3 we present the algorithm of Richards and How [14, 13]
and discuss its main features. In Sec. 12.4 we recall the controllability based stabil-
ity analysis for NMPC schemes from [8, 7]. Section 12.5 contains the main result
of this chapter, i.e., a distributed version of this controllability condition and the
corresponding stability result. In Sec. 12.6 we investigate a simple test example the-
oretically and numerically. Section 12.7 concludes the chapter and presents some
ideas for future extensions of our main result.

12.2 Problem Set-Up and Preliminaries

We consider P ∈N control systems described by the discrete time dynamics

xp(k +1) = fp(xp(k),up(k)) (12.1)

for p = 1, . . . ,P, with xp(k) ∈ Xp, up(k) ∈Up and fp : Xp×Up→ Xp, where Xp are
arbitrary metric spaces and Up are sets of admissible control values for p = 1, . . . ,P.
The solution of Eq. (12.1) for initial value xp(0) = x0

p and control sequence up(k) ∈
Up, k = 0,1,2, . . ., will be denoted by xu

p(k,x
0
p), i.e., we will omit the subscript p in

up in order to simplify the notation. The combined state space of all systems will be
denoted by

X = X1×·· ·×XP.

Our goal is to stabilize each system at a desired equilibrium point x∗
p ∈ Xp. This

means we are looking for feedback controllers µ p(xp(k), Ip(k)) ∈Up which render
the respective equilibria asymptotically stable. Here the additional argument Ip(k)
of the controller µ p denotes information from the other systems. We assume that
for the purpose of exchanging such information the individual systems can commu-
nicate over a network with negligible delay. The precise definition of Ip(k) and the
controller µ p are given in Definition 12.2 and Formula (12.5), below. The closed-
loop solutions of Eq. (12.1) with controller µ p, i.e., the solutions of

xp(k + 1) = fp(xp(k),µ p(xp(k), Ip(k))) (12.2)

will be denoted by xp(k), i.e., in order to simplify the notation we will not explicitly
include the controller µ p, the initial value xp(0) and the additional information Ip in
the notation.

Beyond ensuring stability, we want to design the controllers such that the com-
bined state x(k) = (x1(k), . . . ,xP(k)) of the closed-loop systems satisfies state con-
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straints of the form
x(k) = (x1(k), . . . ,xP(k)) ∈ X⊆ X , (12.3)

i.e., the state constraints are defined via a state constraint set X. Note that these
constraints induce a coupling between the — otherwise independent — systems
which induces the need for passing information Ip(k) between the subsystems.

Example 12.1. As an example which will be used in order to illustrate our con-
cepts throughout this chapter, we consider a very simple model of p = 1, . . . ,P au-
tonomous agents moving in the plane1 R2 with state xp = (xp,1(k),xp,2(k))T ∈ Xp =
R2, control up ∈Up = [−ū, ū]2 ⊂ R2 for some ū > 0 and dynamics

xp(k + 1) = xp(k)+ up(k).

Thinking of xp(k) as the position of the individual agent in the plane, the state con-
straints can be used in order to avoid collisions of the agents. To this end, for some
desired distance δ > 0 we define

X := {(x1, . . . ,xP)T ∈ R2P |‖xp1− xp2‖ ≥ δ , ∀p1, p2 = 1, . . . ,P with p1 6= p2},

where ‖ · ‖ denotes an arbitrary norm in R2. If we use a specific norm in the subse-
quent computations then this will always be explicitly stated.

Clearly, in order to be able to maintain the state constraints in closed loop, i.e., to
avoid collisions in the example, the individual controllers need to have some infor-
mation about the other systems and to this purpose we will use the so far undefined
information Ip(k). In order to define what kind of information Ip(k) the systems
should exchange, we first need to specify the control algorithm we are going to use.
In this chapter, we propose to use a model predictive (or receding horizon) control
approach. To this end, at each time instant k for its current state xp(k) each agent
solves the optimal control problem

minimize JN
p (x0

p,up) =
N−1

∑
j=0

ℓp(xu
p( j,x0

p),up( j)) with initial value x0
p = xp(k)

(12.4)
over all admissible control sequences up(·) ∈UN,ad

p (k,x0
p, Ip(k)) ⊆UN

p on the opti-

mization horizon N ≥ 2, where the set of admissible control sequences UN,ad
p will be

defined in Definition 12.2. Here ℓp is a stage cost function which penalizes the dis-
tance of the state from the equilibrium and the control effort. For instance, ℓ could be
ℓp(xp,up) = ‖xp− x∗

p‖+λ‖up‖ or ℓp(xp,up) = ‖xp− x∗
p‖2 +λ‖up‖2, where λ > 0

is a weight parameter.
We denote the optimal control sequence for Eq. (12.4) by

u∗,k
p (0), . . . ,u∗,k

p (N−1)

1 The example could be extended to arbitrary dimensions, but for simplicity of exposition we stick
to the planar case in this chapter.
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and the corresponding predicted optimal trajectory by

xu∗,k

p (0), . . . ,xu∗,k

p (N−1)

According to the usual receding horizon construction, the value of the MPC con-
troller is given by the first element of the optimal control sequence u∗,k

p (0).
In order to define this MPC feedback law in a rigorous way, we need to define the

set of admissible control sequences in the optimization (12.4) for the pth system. To
this end, we make use of the following definition.

Definition 12.1. (i) For an index set P = {p1, . . . , pm} ⊆ {1, . . . ,P} with m ∈ N ,
m≤ P we define the set of partial states as

XP := Xp1× . . .×Xpm.

Elements of XP will be denoted by xP = (xp1 , . . . ,xpm). The partial state con-
straint set XP ⊂ XP is defined as

XP := {xP ∈ XP | there is x̃ ∈ X with x̃pi = xpi for i = 1, . . . ,m}.

(ii) Given an index set P , an element xP ∈ XP , an element xp ∈ Xp with p 6∈ P and
a subsetQ= {q1, . . . ,ql} ⊂ P we write

(xp,(xq)Q) := (xp,xq1 , . . . ,xql ) ∈ X{p}∪Q.

The admissible control sequences over which we optimize in Eq. (12.4) are now
defined via the information available from the other agents according to the follow-
ing definition.

Definition 12.2. (i) We assume that at time instant k when optimizing (12.4) for

x0
p = xp(k) the pth agent knows prediction sequences x

kq
q (·) = (x

kq
q (0), . . . ,x

kq
q (N−

1)) for q ∈ {1, . . . ,P} \ {p} computed at time instant kq ≤ k from the other agents.
We define

Ip(k) := {(kq,x
kq
q (·)) |q ∈ {1, . . . ,P} \ {p}}.

Note that Ip(k) lies in the set

Ip := (N0×XN
1 )×·· ·× (N0×XN

p−1)× (N0×XN
p+1)×·· ·× (N0×XN

P ).

(ii) Given a time k ∈N0 and Ip ∈ Ip with kq ≤ k for all kq contained in Ip, we define
the set of admissible control sequences for system p at time k as

UN,ad
p (k,x0

p, Ip) := {up(·) ∈UN
p | (xu

p( j,x0
p),(x

kq
q ( j + k− kq))Qp(k, j))

∈ X{p}∪Qp(k, j), ∀ j = 0, . . . ,N−1}

with
Qp(k, j) = {q ∈ {1, . . . ,P} \ {p}| j + k− kq≤ N− 1}.
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The trajectories xu
p(·,x0

p) for u ∈UN,ad
p (k,x0

p, Ip) are called admissible trajectories.

In words, this definition demands that the minimization of (12.4) is performed over
those trajectories which satisfy the state constraints together with the known predic-
tions from the other systems for j = 0, . . . ,N− 1.

The resulting feedback law µ p thus depends on the current state xp(k) of the pth
closed-loop system and on the other systems’ predictions

x
kq
q (·), q 6= p

available at time k. For Ip(k) ∈ Ip the resulting MPC controller is hence given by
the map

µ p : (xp(k), Ip(k)) 7→ u∗,k
p (0), (12.5)

where u∗,k
p (·) is the optimal control sequence minimizing (12.4). For later use we

define the associated optimal value function as

V N
p (x0

p, Ip) := min
up∈UN,ad

p (k,x0
p,Ip)

JN
p (x0

p,up).

In order not to overload the notation, the expression as written does not reflect
the implicit k-dependence of µ p and V N

p . Moreover, for simplicity of exposition,
throughout the chapter we assume that the minimum of this expression exists when-
ever

UN,ad
p (k,x0

p, Ip) 6= ∅
The important questions to be analyzed for this system are the following:

• Do the resulting closed-loop systems (12.2) maintain the state constraints (12.3)?
• Are the optimization problems feasible in each step, i.e., is the set of admissible

control sequences UN,ad
p (k,x0

p, Ip(k)) in the minimization of (12.4) nonempty?
• Is the closed-loop system (12.2) asymptotically stable; in particular, do the tra-

jectories xp(k) converge to the fixed points x∗
p as k→∞?

These are the questions we want to investigate in this chapter. Clearly, the precise
way of how the information Ip(k) is constructed is crucial for answering these ques-
tions. To this end, in the following section we investigate an algorithm in which the
construction of the sets Ip(k) implies that feasibility is sufficient for maintaining the
state constraints, cf. Proposition 12.1.

12.3 The Scheme of Richards and How

In this section we define how the information Ip(k) is constructed and according
to which schedule the information is passed from one system to another. To this
end, we use the sequential scheme introduced by Richards and How in [14, 13]. It
should be noted that the general setting in these references is different from ours: on
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the one hand, only linear dynamics are considered in these references; on the other
hand, perturbations are explicitly included in the models considered in [14, 13] and
the MPC scheme is designed to be robust against perturbations.

The main idea of the way the distributed optimization takes place, however, is
independent from these details. Using the notation introduced in the last section,
this idea is described in the following algorithm. This scheme is sequential in the

Let (x1(0), . . . ,xP(0)) ∈ X be given initial values.

(0) Initialization for k = 0.

Find control sequences up ∈UN
p such that the corresponding trajectories satisfy

(xu
1( j,x1(0)), . . . ,xu

P( j,xP(0))) ∈ X for j = 0, . . . ,N−1. (12.6)

for p = 1, . . . ,P:

Set kp = 0, x
kp
p ( j) = xu

p( j) for j = 0, . . . ,N−1 and send (kp,x
kp
p (·))

to all other systems

Apply the control value µ p(x
0
p) = up(0) in the first step.

end of p-loop

(1) Control loop for k ≥ 1.

for k = 1,2, . . .:
for p = 1, . . . ,P:

set

Ip(k) := ((k,xk
1(·)), . . . ,(k,x

k
p−1(·)), (k−1,xk−1

p+1 (·)), . . . , (k−1,xk−1
P (·)))

and minimize (12.4) for x0
p = xp(k) with respect to up ∈UN,ad

p (k,x0
p , Ip(k)).

Denote the resulting optimal control by u∗,k
p , set kp = k, x

kp
p ( j) = xu∗,k

p ( j).

for j = 0, . . . ,N−1 and send (kp,x
kp
p (·)) to all other systems

Apply the control value µ p(x
0
p, Ip(k)) = u∗,k

p (0) in the kth step

end of p-loop

end of k-loop

sense that in step (1) the individual systems perform their optimization one after
the other before the control values are eventually applied in all systems. Note that
system p always uses the most recent available predictions of the other systems in
order to construct the set of admissible control sequences UN,ad

p , i.e., for q < p the
predictions xk

q made at time k are used and for q > p the predictions xk−1
q computed

at time instant k− 1 are used in Ip(k). In case of a large number P of systems this
sequential optimization may cause rather long waiting times, which may not be
available in case of fast sampling. While one goal of future research will thus be to
relax the strict sequential structure (see also Sec. 12.7, below), we remark that the
scheme is well applicable for small values of P and, as pointed out in [13, Sec. 7],
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even for large P the scheme considerably reduces the numerical effort compared to
a centralized solution of the optimization problem in each time instant.

The main advantage of the sequential scheme is that once the initialization
step (0) has been performed successfully, the validity of the state constraints for the
closed-loop solution follows from feasibility. This is made precise in the following
proposition.

Proposition 12.1. Assume that in Algorithm 12.3 the initialization step (0) is suc-
cessful in finding up ∈UN

p satisfying (12.6) and that in step (1) the optimal control

problems are feasible, i.e., that UN,ad
p (k,xp(k), Ip(k)) 6= ∅ holds for all p = 1, . . . ,P

and all k ≥ 1. Then, the closed-loop system maintains the state constraints (12.3)
for all k ≥ 0.

Proof. Condition (12.6) and the definition of µ p in step (0) immediately imply Eq.
(12.3) for k = 1. Now we proceed by induction over k. Assume that Eq. (12.3) holds
for some k ≥ 1 and that UN,ad

p (k,xp(k), Ip(k)) 6= ∅ holds for all p = 1, . . . ,P. Then

each µ p defined in step (1) is well defined and the definition of UN,ad
P (k,xP(k), IP(k))

implies

(xu∗,k

1 (1,x1(k)), . . . ,x
u∗,k

P (1,xP(k))) ∈ X.

By definition of the µ p and (12.2) we obtain

xp(k + 1) = fp(xp(k),µ p(xp(k), Ip(k))) = fp(xp(k),u∗,k
p (0)) = xu∗,k

p (1,xp(k))

for all p = 1, . . . ,P and thus

(x1(k +1), . . . ,xP(k + 1)) = (xu∗,k

1 (1,x1(k)), . . . ,x
u∗,k

P (1,xP(k))) ∈X.

This shows Eq. (12.3) for k +1. ⊓⊔
In order to ensure UN,ad

p (k,xp(k), Ip(k)) 6= ∅, in [13] a condition involving termi-
nal constraints sets is used. The following assumption summarizes this condition in
our notation and does so without the additional constructions needed for the robust
design in [13].

Assumption 12.1. There exist closed neighborhoods Tp, p = 1, . . . ,P, of the equi-
libria x∗

p satisfying the following conditions.

(i) T1×·· ·×TP ⊂ X.
(ii) On each Tp there exists a stabilizing controller Kp for xp such that Tp is forward

invariant for the closed-loop system using Kp.
(iii) The control functions up in the initialization step (0) and in the optimization of

(12.4) in step (1) are such that xu
p(N,xp(k)) ∈ Tp holds. In the optimization, this

amounts to adding xu
p(N,xp(k)) ∈ Tp as a further condition to the definition of

the admissible control sequences UN,ad
p (k,x0

p, Ip(k)).
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The benefit of this condition is that if the computation of u1, . . . ,uP satisfying
(12.6) in step (0) is successful at time k = 0, then UN,ad

p (k,x0
p, Ip(k)) 6= ∅ is ensured

for all subsequent times k ≥ 1 and all p = 1, . . . ,P. In order to see this, consider the
control sequence u∗,k−1

p from the previous time step k−1 in step (1) for p = 1, . . . ,P.
Then the construction of Iq(k−1) for q > p and Iq(k) for q < p ensures

u∗,k−1
p (·+1) ∈UN−1,ad

p (k,x0
p, Ip(k))

Since
xu∗,k−1

p (N− 1,xp(k)) = xu∗,k−1

p (N,xp(k−1)) ∈ Tk

by setting up( j) = u∗,k−1
p ( j+1) for j = 0, . . . ,N−2 and up(N−1) = Kpxu∗,k−1

p (N−
1,xp(k)) we obtain xu

p(N,xp(k)) ∈ Tp. Since the predictions of all other systems
q 6= p also end up in their respective sets Tq and T1×·· ·×TP ⊂ X, we obtain up ∈
UN,ad

p (k,x0
p, Ip(k)).

Beside ensuring feasibility, Assumption 12.1 also ensures stability. Indeed, a
standard MPC stability proof (cf. [10] or [12, Sec. 2.4]) shows that under a com-
patibility condition between the stage cost ℓp and a suitably chosen terminal cost
which is defined on Tp and added to JN in (12.4), the optimal value function Vp

becomes a Lyapunov function of the system, which proves stability. For this reason,
the sets Tp in Assumption 12.1 are usually called stabilizing terminal constraints.

In the context of Example 12.1, the stabilizing terminal constraints demand that
already in the initialization step (0) we have to plan collision-free trajectories for all
systems from the initial value xp(0) to a neighborhood Tp of x∗

p. On the one hand,
this implies that we may need to use rather large optimization horizons N if we
consider initial conditions xp(0) far away from the terminal sets Tp. On the other
hand, and more importantly in our distributed setting, Assumption 12.1 implies that
all conflicts, i.e., possible collisions, until the “safe” terminal constraint sets Tp are
reached, have to be resolved in the initialization step (0). Although in each iteration
in step (1) the optimization algorithm is allowed to replan the trajectory, condition
(12.6) is crucial in order to ensure feasibility for k = 1 and thus—via Proposition
12.1—to ensure that the state constraints are maintained for all k ≥ 1.

The goal of this chapter is now to relax these two drawbacks. While we will keep
using Algorithm 12.3, we will not use Assumption 12.1 and in particular we will
not require the solutions to end up in terminal constraint sets Tp. The hope is that
this will enable us to obtain an MPC scheme which is stable and maintains the state
constraints with considerably smaller optimization horizon N and—in the context
of Example 12.1—which is able to solve possible conflicts at the times k ≥ 1 when
they become visible and not necessarily in the initialization step 0.

To this end, in the next section we first revisit a stability condition for NMPC
schemes without stabilizing terminal constraints.
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12.4 Stability of NMPC without Stabilizing Terminal Constraints

In this section we recall the stability analysis of NMPC controllers without stabiliz-
ing terminal constraints from [8, 7]. We will present the analysis for a single system
of type (12.1). In Sec. 12.5, we extend these results to our setting with P systems.

Since in this section we deal with a single system of type (12.1), we will omit the
index p in all expressions as well as the dependence of V N and µ on information
from the other systems. Analogous to Definition 12.2, admissibility for a control
sequence u ∈UN and an initial value x0 ∈ X means that u( j) ∈U and xu( j,x0) ∈
X for j = 0, . . . ,N− 1, i.e., that the state constraints are maintained. Since in this
section we do not consider couplings between different systems, Definition 12.2(ii)
simplifies to

UN,ad(x0) := {u(·) ∈UN |xu( j,x0) ∈X for all j = 0, . . . ,N− 1}. (12.7)

We assume that for each x ∈ X and each N ∈ N this set satisfies UN,ad(x) 6= ∅,
which means that the state constraint set X⊂ X is forward invariant or viable. This
assumption provides the easiest way to ensure feasibility of the resulting NMPC
scheme and is used here in order to simplify the exposition. If desired, it can be
relaxed in various ways; see, e.g., [6, Sec. 8.2–8.3] or [11, Theorem 3].

Stability of the NMPC closed loop is established by showing that the optimal
value function V N is a Lyapunov function for the system. More precisely, we aim at
giving conditions under which for all x ∈ X we can establish the inequalities

α1(‖x− x∗‖)≤V N(x)≤ α2(‖x− x∗‖) (12.8)

and
V N( f (x,µ(x)))≤V N(x)−αℓ(x,µ(x)) (12.9)

for α1,α2 ∈K∞ and α ∈ (0,1]. Then, under the additional assumption that

α3(‖x− x∗‖)≤ ℓ∗(x)≤ α4(‖x− x∗‖) (12.10)

holds for all x ∈X, suitable α3,α4 ∈ K∞ and ℓ∗(x) := minu∈U ℓ(x,u), we can con-
clude asymptotic stability as stated by the following theorem.

Theorem 12.1. Assume that the inequalites (12.8), (12.9) and (12.10) hold for the
optimal value function V N and the stage cost ℓ of the optimal control problem (12.4)
for one system, i.e., for p = P = 1. Then the closed-loop system (12.2) with the
NMPC feedback (12.5) is asymptotically stable on X.

Proof. The proof follows from by standard Lyapunov function arguments using V N

as a Lyapunov function; see [8, Theorem 5.2]. ⊓⊔
The inequalities (12.8) and (12.9) can be ensured by an asymptotic controllability
condition of the equilibrium x∗. Here we work with the special case of exponential
controllability; more general versions can be found in [8, 7].
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Assumption 12.2. Given constants C > 0, σ ∈ (0,1), for each x ∈ X and each N ∈
N there exists an admissible control function ux ∈UN,ad(x) satisfying

ℓ(xux( j,x),ux( j)) ≤Cσ jℓ∗(x)

for all j ∈ {0, . . . ,N−1} with ℓ∗ from (12.10).

Observe that the controllability condition is defined here in a slightly weaker
form than in [8, 7] in the sense that the control function ux is implicitly allowed
to depend on N while in [8, 7] the existence of one ux for all N ∈ N is assumed.
However, it is straightforward to see that the weaker condition given here is suffi-
cient for all arguments used in the proofs in these references. Note that the constant
C > 0 allows for an increase of ℓ(xux( j,x),ux( j)) for small j before it must eventu-
ally decrease. In particular, ℓ does not need to be a control Lyapunov function for
the system.

Example 12.2. Consider Example 12.1 with only one system, which in particular
implies that the state constraint X does not include any coupling terms. Instead, we
use the state constraint set X = [−1,1]2. As stage cost we use ℓ(x,u) = ‖x− x∗‖2 +
λ‖u‖2 for some x∗ ∈ [−1,1] and some λ ≥ 0. Moreover, let c := maxx∈X ‖x− x∗‖
denote the maximal distance in X from x∗.

We inductively define a control u ∈UN,ad(x) by

u(k) = κ(x∗− xu(k,x)) with κ = min{ū/c, ρ}

for some design parameter ρ ∈ (0,1). Note that the choice of κ implies u(k) ∈
[−ū, ū]2 for xu(k,x) ∈ X. Moreover, this definition implies

xu(k +1,x) = xu(k,x)+ κ(x∗− xu(k,x)) (12.11)

and, as a consequence,

‖xu(k +1,x)− x∗‖= (1−κ)‖xu(k,x)− x∗‖. (12.12)

Due to the convexity of X and κ ∈ (0,1), the identity (12.12) ensures feasibility of
xu(·). Using the definition of u(k) and (12.12) yields

ℓ(xu(k,x),u(k)) = ‖xu(k,x)− x∗‖2 + λ‖u(k)‖2

= (1 +λκ2)‖xu(k,x)− x∗‖2

= (1 +λκ2)(1−κ)2k‖xu(0,x)− x∗‖2

= (1 +λκ2)(1−κ)2kℓ∗(xu(0,x))

which shows Assumption 12.2 for ux = u with C = 1 + λκ2 and σ = (1− κ)2.
Analogously, one obtains Assumption 12.2 for ℓ(x,u) = ‖x− x∗‖+λ‖u‖ with C =
1+ λκ and σ = 1−κ.

Under Assumption 12.2, the following properties hold.
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Lemma 12.1. Let Assumption 12.2 hold and define

BN(r) :=
N−1

∑
n=0

Cσ nr = C
1−σN

1−σ
r.

Then for each x ∈ X the following properties hold.

(i) The inequality
V N(x)≤ JN(x,ux)≤ BN(ℓ∗(x)) (12.13)

holds.
(ii) Let u∗ be an optimal control sequence for (12.4). Then for each

k = 0,1, . . . ,N− 2, the inequality

JN−k(xu∗

(k,x),u∗(k + ·))≤ BN−k(ℓ∗(xu∗

(k,x))) (12.14)

holds.
(iii) Let u∗ be an optimal control sequence for (12.4). Then for each j = 0,1, . . . ,N−

2 the inequality

V N(xu∗

(1,x))≤ J j(xu∗

(1,x),u∗(1 + ·))+BN− j(ℓ∗(xu∗

(1 + j,x))) (12.15)

holds.

Proof.

(i) This follows immediately from Assumption 12.2.
(ii) This inequality follows from (i) applied to x = xu∗

(k,x) using the fact that by the
dynamic programming principle tails of optimal trajectories are again optimal
trajectories; see [8, Lemma 3.4] for details;

(iii) Follows from the inequality V N(xu∗

(1,x)) ≤ JN(xu∗

(1,x), ũ) using the control
function

ũ(n) =

{
u∗(1 +n), n≤ j−1

ux(n), n≥ j

with ux from Assumption 12.2 with x = xu∗

(1 + j,x) and (i); for details see [8,
Lemma 3.5].

⊓⊔

Remark 12.1. Lemma 12.1 (i) yields that under Assumption 12.2 the inequalities in
(12.10) imply (12.8). Indeed, the inequality

V N(x) = JN(x,u∗)≥ ℓ(x,u∗(0))≥ ℓ∗(x)≥ α3(‖x− x∗‖)

implies the lower inequality in (12.8) with α1 = α3 and
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V N(x)≤ BN(ℓ∗(x)) = C
1−σN

1−σ
ℓ∗(x)≤C

1−σN

1−σ
α4(‖x− x∗‖)

implies the upper inequality in (12.8) with α2 = C 1−σN

1−σ α4.

It remains to establish (12.9) for which we use Lemma 12.1(ii) and (iii) in the
following way.

Proposition 12.2. Assume Assumption 12.2 and consider N≥ 1, a sequence λ n > 0,
n = 0, . . . ,N−1, and a value ν > 0. Let x∈X and let u∗ ∈UN be an optimal control
sequence for (12.4) such that λ n = ℓ(xu∗

(n,x),u∗(n)) holds for n = 0, . . . ,N − 1.
Then

N−1

∑
n=k

λ n ≤ BN−k(λ k), k = 0, . . . ,N−2 (12.16)

holds. Furthermore, if ν = V N(xu∗
(1)) holds, then

ν ≤
j−1

∑
n=0

λ n+1 +BN− j(λ j+1), j = 0, . . . ,N− 2 (12.17)

holds.

Proof. If the stated conditions hold, then λ n and ν must meet inequalities (12.14)
and (12.15), which are exactly (12.16) and (12.17), respectively. ⊓⊔

The conditions (12.16) and (12.17) lead to the following sufficient condition for
(12.9).

Theorem 12.2. Let N ≥ 1, assume that Assumption 12.2 holds and that the opti-
mization problem

α := inf
λ 0,...,λ N−1,ν

∑N−1
n=0 λ n−ν

λ 0

subject to the constraints (12.16), (12.17) and

λ 0 > 0,λ 1, . . . ,λ N−1, ν ≥ 0

(12.18)

has an optimal value α ∈ (0,1]. Then (12.9) holds for this α for each x ∈X.

Proof. The optimization objective in (12.18) implies that for all values λ 1, . . . ,
λ N−1, ν satisfying (12.16), (12.17), the inequality

ν ≤
N−1

∑
n=0

λ n−αλ 0

holds. Proposition 12.2 then implies that for each optimal trajectory starting in
some arbitrary x ∈ X the values λ n = ℓ(xu∗

(n,x),u∗(n)) and ν = V N(xu∗
(1,x))

satisfy (12.16) and (12.17), which yields
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V N(xu∗

(1,x))≤
N−1

∑
n=0

ℓ(xu∗

(n,x),u∗(n))−αℓ(xu∗

(0,x),u∗(0))

= V N(x)−αℓ(x,u∗(0)).

Since by definition of the MPC feedback law we obtain µ(x) = u∗(0) and thus
f (x,µ(x)) = xu∗

(1,x), this proves (12.9). ⊓⊔
The characterization of α via the optimization problem (12.18) is particularly

useful because it admits the following explicit analytic solution.

Theorem 12.3. Under Assumption 12.2 the optimization problem (12.18) has the
solution

α = 1−
(γN −1)

N
∏

k=2
(γk− 1)

N
∏

k=2
γk−

N
∏

k=2
(γk−1)

with γk = C
1−σk

1−σ
(12.19)

for C > 0 and σ ∈ (0,1) from Assumption 12.2. Furthermore, for each pair of values
C > 0 and σ ∈ (0,1) the value α in (12.19) satisfies α → 1 as N→∞.

Proof. Formula (12.19) follows from [7, Theorem 5.4] and the convergence α → 1
from [7, Corollary 6.1]. ⊓⊔

Remark 12.2. An inspection of the proof of [7, Theorem 5.4] shows that some in-
equalities provided by Lemma 12.1 are not needed in order to prove (12.19) since
in this proof a relaxed problem [7, Problem 5.3] with fewer constraints was used. It
turns out that the inequalities not needed in this relaxed problem are exactly (12.14)
for k = 1, . . . ,N− 2 or, equivalently, (12.16) for k = 1, . . . ,N − 2, see [6, Remark
6.35]. While this has no consequence for the analysis in this section since we get all
inequalities in (12.14) “for free” from Assumption 12.2, this observation will turn
out very useful in the next section.

Combining Theorems 12.1, 12.2 and 12.3 yields the following corollary.

Corollary 12.1. Consider a single system of type (12.1) and the NMPC feedback
law (12.5) for some N ≥ 2. Let Assumption 12.2 and (12.10) hold and assume that
α > 0 holds for α from (12.19). Then, the closed-loop system (12.2) is asymptoti-
cally stable on X.

Using the convergence α → 1 for N →∞, we can use this corollary in order
to conclude that when (12.10) and Assumption 12.2 hold, then asymptotic stability
can be guaranteed for each sufficiently large optimization horizon N. Beyond this
asymptotic result, however, the condition α > 0 in (12.19) also gives a useful sta-
bility criterion for small optimization horizons N, as the following example shows.

Example 12.3. We reconsider Example 12.2 with N = 2. Formula (12.19) simplifies
to α = 1− (C +σC−1)2. Since κ ∈ (0,1), C = 1 +λ κ2, σ = (1−κ)2 we obtain
with λ ∈ (0,1)
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C +σC−1 = (1 +λκ2)(1−κ2)≤ (1 +κ)(1−κ)2 = (1−κ2)(1−κ) < 1

which implies α > 0. For instance, for λ = 0.1, ρ = 0.5 we obtain α ≈ 0.8102 or
α ≈ 0.9209 for the Euclidean and the ∞-norm respectively. This shows that the
MPC closed loop is asymptotically stable for N = 2 which is the shortest possible
optimization horizon, given that the sum in (12.4) only includes the states xu( j,x0)
for j = 0, . . . ,N−1.

More complex examples of this kind, including infinite-dimensional PDE mod-
els, can be found, e.g., in [8, Sec. 6 and 7] or [1, 2, 6]. Finally, we remark that α
also allows us to estimate the performance of the MPC feedback law µ in terms of
an infinite horizon optimization criterion; for details see, e.g., [8, Theorem 4.2].

12.5 Stability of Distributed NMPC without Stabilizing Terminal
Constraints

In this section we adapt the results of the previous section to the distributed MPC
setting introduced in Sec. 12.2 using Algorithm 12.3. The goal is to adapt Assump-
tion 12.2 to the distributed setting. This way we derive a sufficient condition for
distributed NMPC without stabilizing terminal constraints which ensures feasibility
of the optimal control problems in Algorithm 12.3 step(1)—and thus via Proposi-
tion 12.1 guarantees that the state constraints are maintained—and stability of the
NMPC closed loop. Stability will be guaranteed by showing that each optimal value
function V N

p will satisfy the inequalities (12.8) and (12.9), i.e., that each V N
p is a

Lyapunov function for the corresponding system.
Comparing the distributed setting of Sec. 12.2 with the nondistributed setting of

Sec. 12.4, the main difference is that the set of admissible control sequences UN,ad
p

in Definition 12.2(ii) changes with time k due to the fact that the information Ip(k) in
Algorithm 12.3(1) also changes with time. In contrast to this, the set UN,ad in (12.7)
is constant over time. In order to include the time-dependence in the controllability
assumption we make use of sets of admissible control sequences according to the
following definition.

Definition 12.3.
(i) For m1 > m2 ∈ N and a control sequence u = (u(0), . . . ,u(m1−1)) ∈Um1

p we
define the restriction

u|m2 := (u(0), . . . ,u(m2−1)) ∈Um2
p .

(ii) A family of sets W m
p ⊂Um

p , m ∈ {1, . . . ,N}, N ≥ 2, of admissible control se-
quences is called nested if for all m1,m2 ∈ {1, . . . ,N} with m1 > m2 and all
u ∈Um1

p the implication

u ∈W m1
p ⇒ u|m2 ∈W m2

p

12 A Distributed NMPC Scheme without Stabilizing Terminal Constraints 275
     irmgn.ir



holds.
(iii) For a nested family of admissible control sequence sets W m

p ⊂ Um
p , integers

l,m ∈ N , m ∈ {1, . . . ,N}, l + m≤ N, and a control sequence u ∈W l
p we define

Wp[u, l,m] := {ũ ∈Um
p |(u(0), . . . ,u(l−1), ũ(0), . . . , ũ(m− 1))∈W l+m

p }.

Recalling that in our setting the admissible control sequences are derived from
the state constraint sets X and the predicted trajectories of the other systems con-
tained in Ip via Definition 12.2(ii), a little computation reveals that for each time

instant k ≥ 0 the sets W m
p = Um,ad

p (k,x0
p, Ip), m ∈ N are nested and that this choice

of W m
p implies

Wp[u, l,m] = Um,ad
p (k + l,xu

p(l,x
0
p), Ip).

Another issue we take into account when adapting Assumption 12.2 is that in the
distributed setting it is quite demanding to assume that controllability holds for all
possible initial values. Instead, we will formulate the respective condition for fixed
initial conditions. The following theorem presents this variant in an abstract setting
with nested admissible control sequence sets W m

p and W̃ m
p . In Theorem 12.5 we will

then show how this condition fits into Algorithm 12.3.

Theorem 12.4. Consider some p ∈ {1, . . . ,P}, two families of nested admissible
control sequence sets W m

p , W̃ m
p ⊆Um

p , m ∈ {1, . . . ,N} for N ≥ 2, a point x0
p ∈ Xp

and the optimal values

V N := min
up∈W N

p

JN
p (x0

p,up) and Ṽ N := min
ũp∈W̃ N

p

JN
p (x̃p, ũp)

with x̃p = fp(x0
p,u

∗
p(x

0
p)) where u∗

p ∈W N
p denotes the optimal control for V N , i.e.,

V N = JN
p (x0

p,u
∗
p).

For given constants C > 0, σ ∈ (0,1) assume that the following holds:

(i) The inequality V N ≤ BN(x0
p) holds for BN from Lemma 12.1;

(ii) The optimal control u∗
p ∈W N

p satisfies (u∗(1), . . . ,u∗(N−1))∈ W̃ N−1
p ;

(iii) For each j = 0, . . . ,N− 2 there exists ũ ∈ W̃p[u∗(1 + ·), j,N− j] with

ℓp(x
ũ
p(s,x

u∗

p (1+ j,x0
p)), ũ(s))≤Cσ sℓ∗

p(x
u∗

p (1+ j,x0
p)), s = 0,1, . . . ,N− j−1.

Then, the inequality
Ṽ N ≤V N−αℓp(x0

p,u
∗(0))

holds for α from 12.19.

Proof. It is sufficient to show (12.13)–(12.15) for x = x0
p, V N(x) = V N and

V N(xu∗

(1,x)) = Ṽ N . This implies that λ n = ℓp(xu∗

(n,x0
p),u

∗(n)) and ν = Ṽ N satisfy
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(12.16), (12.17) and by the same argument as in the proof of Theorem 12.2 we ob-
tain the assertion when we use Theorem 12.3 in order to solve (12.18). By Remark
12.2 it is sufficient to show (12.14) for k = 0.

In order to prove these inequalities, observe that (12.13) and (12.14) for k = 0
follow directly from (i). In order to prove (12.15) we use that (iii) implies

JN− j
p (xu∗

p (1 + j,x0
p), ũ)≤ BN− j(ℓ∗

p(x
u∗

p (1 + j,x0
p))), j = 0,1, . . . ,N− 2, (12.20)

for BN from Lemma 12.1. Observe that (ii) is needed in order to ensure that
W̃p[u∗(1 + ·), j,N− j] in (iii) is well defined.

Now (12.15) follows from (12.20) using the inequality

V N(xu∗

p (1,x0
p))≤ J j

p(x
u∗

p (1,x0
p),u

∗(1 + ·))+ JN− j
p (xu∗

p (1 + j,x0
p), ũ),

which holds, since (ii) and ũ ∈ W̃p[u∗(1+ ·), j,N− j] imply (u∗(1), . . . , u∗( j), ũ(0),

. . . , ũ(N− j−1))∈ W̃ N
p . ⊓⊔

The following theorem incorporates this condition into Algorithm 12.3.

Theorem 12.5. Consider Algorithm 12.3 with optimization horizon N ∈ N in 12.4,
let C > 0 and σ ∈ (0,1) and assume that the stage costs ℓp satisfy 12.10 for all
p ∈ {1, . . . ,P} and suitable α3, α4 ∈ K∞. Assume that step (0) of the algorithm is
successful and denote the resulting control functions by u∗,0

p . Assume, furthermore,
that in step (1) of the algorithm for each k≥ 1 and each p∈ {1, . . . ,P} condition (iii)
of Theorem 12.4 holds with u∗ = u∗,k−1

p , x0
p = xp(k−1) and

W̃ m
p = Um,ad

p (k,xp(k), Ip(k)), m = 1, . . . ,N.

Then, the closed-loop solutions maintain the state constraints 12.3 and there exists
α1,α2 ∈ K∞ such that the optimal value functions V N

p satisfy

α1(‖xp(k)− x∗
p‖)≤V N

p (xp(k), Ip(k))≤ α2(‖xp(k)− x∗
p‖) (12.21)

for all k ≥ 1 and the inequality

V N
p (xp(k+1), Ip(k+1))≤V N

p (xp(k), Ip(k))−αℓ(xp(k),µ p(xp(k), Ip(k))) (12.22)

holds for α from (12.19) and all k ≥ 1.
In particular, if α > 0 (which always holds for N > 0 sufficiently large) then the

V N
p are Lyapunov functions for the closed loop systems for k≥ 1 and thus asymptotic

stability of the equilibria x∗
p follows.

Proof. We show that for each k ≥ 2 the assumptions of Theorem 12.4 hold with

W m
p = Um,ad

p (k− 1,xp(k− 1), Ip(k−1)), W̃ m
p = Um,ad

p (k,xp(k), Ip(k))

with
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x0
p = xp(k− 1), x̃p = xp(k) and u∗ = u∗,k−1

p

To this end, first observe that in the discussion after Assumption 12.1 we have shown
that in step (1) the relation

u∗,k−1
p (1 + ·) ∈UN−1,ad

p (k,xp(k), Ip(k))

holds, which implies that condition (ii) of Theorem 12.4 is satisfied.
Condition (iii) of Theorem 12.4 holds by assumption, and condition (i) of The-

orem 12.4 at time k follows from condition (iii) for j = 0 at time k− 1, since
xp(k) = xu∗,k−1

p (1,xp(k−1)) and W m
p at time k equals W̃ m

p at time k− 1.
Thus, Theorem 12.4 is applicable which proves (12.22).
Inequality (12.21) is then obtained with the same arguments as in Remark 12.1.

Finally, since the assumed condition (iii) of Theorem 12.4 in particular demands
UN,ad

p (k,xp(k), Ip(k)) 6= ∅, Proposition 12.1 yields feasibility of the problem and
implies that the closed-loop solutions satisfy the state constraints (12.3). ⊓⊔

The central assumption in this theorem is that condition (iii) of Theorem 12.4
holds. In words, this assumption requires two things: first, UN,ad

p (k,xp(k), Ip(k))
needs to be nonempty, which means that given the predictions of the other systems
xu

q, q 6= p, contained in Ip there is still enough space to “squeeze in” a solution xu
p.

Second, the condition requires that starting from any point on the optimal open-
loop trajectory from the last time instant, there are solutions which approach the
equilibrium x∗

p sufficiently fast in the sense of the controllability assumption. The
important fact in this condition is that when the pth system selects its control it
knows the other systems’ predictions. For this reason this rather technical condition
can be rigorously verified at least for simple systems, as the example in the following
section shows.

Note that even though step (0) remains formally identical to Algorithm 12.3,
without the additional terminal condition from Assumption 12.1(iii) and with smaller
N it is much easier to satisfy (12.6). This is illustrated in the numerical simulations
at the end of the next section, in which for most of the systems the state constraints
only become relevant after several steps of the algorithm.

12.6 An Example

In this section we first verify that Example 12.1 satisfies the conditions of Theorem
12.5 for P = 2 under suitable conditions. Afterwards, we numerically illustrate the
performance of the scheme for this example with P = 2 and P = 4.

In order to verify the conditions of Theorem 12.5, we consider Example 12.1
with P = 2 and show that the conditions hold for p = 1 and all initial values x0

1
which are bounded by ‖x0

1‖ ≤ K for some K > 0. Analogous arguments then show
the condition for p = 2. Without loss of generality we may assume x∗

1 = 0. Since

a priori it is not clear how the predictions xu∗,k2
2 contained in I1(k) defining the sets
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Um,ad
p in Theorem 12.5 look, we show the stronger property, that the conditions

hold for p = 1 for all possible trajectories xu
2. The only thing we have to exclude

here is that xu
2 stays too close to the equilibrium x∗

1 , because then it will never be
possible for xu

1 to reach x∗
1 without collision and thus to reduce ℓ1(xu

1(k),u1(k)) to 0.
Hence, in what follows we consider all possible trajectories xu

2(k) that stay outside
a neighborhood around x∗

1 = 0.
We show the following lemma, which implies the conditions of Theorem 12.5

whenever the trajectory x∗,k2
2 contained in I1(k) remains outside the neighborhood

with radius R+ δ around x∗
1 . In order to streamline the exposition, in the following

lemma the norm ‖ · ‖ is either the Euclidean or the∞-norm. Without loss of gener-
ality we furthermore assume δ > ū; otherwise, we can restrict ourselves to smaller
control values than actually allowed.

Lemma 12.2. We consider the stage cost ℓ1(x1,u1) = ‖x1‖2 +λ‖u1‖2 and the state
constraint set X from Example 12.1 for P = 2. Given K > 0 and R > δ > ū there ex-
ists C > 0, σ ∈ (0,1) such that for each trajectory xu

2(k) satisfying ‖xu
2(k)‖∞ ≥

R + δ or ‖xu
2(k)‖2 ≥

√
2(R + δ ) for all k ∈ N0 and each initial value x0

1 with
‖x0

1‖ ≤ K and (x0
1,x

u
2(0)) ∈X, there exists a control sequence u1(k) ∈ [−ū, ū]2 with

(xu
1(k,x

0
1),x

u
2(k)) ∈X and

ℓ1(x
u
1(k,x

0
1),u(k))≤Cσ kℓ∗

1(x0
1), ∀k ∈N0 (12.23)

Proof. For x0
1 6∈ T, the fact that ‖xu

2(k)‖∞ ≥ R + δ , whenever x0
1 ∈ T = [−R,R]2

implies that the control u1 = u constructed in Example 12.2 satisfies (12.23) for
suitable C̃ and σ since the resulting trajectory remains in T and thus (xu

1(k),x
u
2(k))∈

X holds for all k ∈ N0.
For x0

1 6∈ T , Lemma 12.3 applied with xu(·) = xu
1(·) and y(·) = xu

2(·) shows the ex-
istence of a constant k and a control u1 = u such that xu

1(k
∗) ∈ T for a k∗ ≤ k;

cf. Remark 12.4 for the Euclidean norm. Since ‖u1(k)‖∞ is bounded by ū, the
trajectory xu

1(k,x
0
1) from (12.3) is bounded in the ∞-norm by K + kū and thus

ℓ(xu
1(k,x

0
1),u1(k)), k = 0, . . . ,k, is bounded by some constant L independent of x0

1.
Using u from Example 12.2 from time k∗ on, the resulting overall control sequence
satisfies (xu

1(k,x
0
1),x

u
2(k)) ∈ X for all k ≥ 0,

ℓ1(x
u
1(k,x

0
1),u(k))≤ L≤ L‖x0

1‖2

R2 = (L/R2)ℓ∗(x0
1)≤

Lσ−k

R2 σ kℓ∗(x0
1)

for k = 0, . . . ,k, and

ℓ1(x
u
1(k,x

0
1),u(k))≤ C̃σ k−kℓ∗

1(x
u
1(k,x

0
1))≤ C̃σ k−k2ℓ∗

1(x0
1),

for k ≥ k. Here the last inequality follows from ℓ∗(xu
1(k,x

0
1)) = ‖xu

1(k,x
0
1)‖2 ≤

2‖xu
1(k,x

0
1)‖2

∞ ≤ 2R2 ≤ 2‖x0
1‖2

∞ ≤ 2‖x0
1‖2 = 2ℓ∗

1(x0
1). Together this yields
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ℓ1(x
u
1(k,x

0
1),u(k))≤max{Lσ−k

R2 ,2C̃σ−k}σ kℓ∗
1(x0

1)

and thus (12.23) with C = max{Lσ−k/R2,2C̃σ−k}. ⊓⊔

Remark 12.3. (i) The construction used in the proof of Lemma 12.3 and, thus, in
this example heavily relies on the knowledge of xu

2. Indeed, without this knowledge
the construction of k∗ and u1 would not be possible. Hence, the communication of
Ip in the algorithm is crucial for ensuring the conditions of Theorem 12.5 in this
example.

(ii) The additional condition ‖xu
2(k)− x∗

1‖∞ ≥ R+ δ (and vice versa for xu
1(k)−

x∗
2 ) could be ensured by including it into the state constraint set X. However, when

x∗
1 and x∗

2 are sufficiently far apart, then there is no incentive for the finite horizon
optimal trajectory xu

2 to stay near x∗
1 and vice versa. This is the situation in the

following examples in which we did not explicitly include this condition in the
optimization.

The following numerical simulation of the MPC control of this example con-
firms that the scheme yields a feasible and stable closed loop. The numerical exam-
ples were performed with MATLAB2 using the stage cost ℓp(xp,up) = ‖xp− x∗

p‖+
0.1‖up‖, converting the optimal control problems in static optimization problems,
which are solved with MATLAB’s fmincon-routine. Here the control functions
in step (0) of Algorithm 12.3 are computed using optimal control similar to step
(1), where the admissible control sequences for the pth system are defined via the
state constraints induced by the predictions xu

1(k), . . . ,x
u
p−1(k). In all examples we

have added the additional constraints xp ∈ [−1,1]2 to X, and we have chosen the
initial conditions xp(0) at the boundary of [−1,1]2 and the desired equilibria on the
opposite side of [−1,1]2, i.e., x∗

p = −xp(0). This implies that the agents meet far
away from the boundary of [−1,1]2 and from the equilibria x∗

p; thus the theoretical
analysis from the first part of this section remains valid. Figure 12.1 shows a corre-
sponding simulation in which N = 3 turns out to be sufficient for stability. Further
numerical simulations show that the scheme is stable also for a larger number P
of agents. However, in this case it becomes more difficult to control the individual
systems to their equilibria, which is reflected by the fact that for P = 4 systems
and the initial values from Fig. 12.2—which extend those of Fig. 12.1—stability
is only obtained for N ≥ 8. However, even with N = 8 the horizon is considerably
shorter than the optimization horizon needed in order to find predictions that end
up in stabilizing terminal constraint sets around the equilibria. Our final numerical
experiment shows that the optimization horizon N needed in order to obtain stability
of the closed loop heavily depends on the initial values, i.e., on the way the individ-
ual agents meet and in which direction they are heading when they meet. Due to
the fact that the control constraints up ∈ [−ū, ū] are box constraints, which allow the
systems to move faster and more flexibly in diagonal direction, it is not surprising

2 All MATLAB-Files are available on www.math.uni-bayreuth.de/∼lgruene/publ/disNMPC.html
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Fig. 12.1 MPC for Example 12.1 with P = 2 systems with initial values x1(0) = (1,0)T , x2(0) =
(−1,0)T and optimization horizon N = 3. Prediction for k = 0 (left) and final trajectories at k = 16
(right).
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Fig. 12.2 MPC for Example 12.1 with P = 4 systems with initial values x1(0) = (1,0)T , x2(0) =
(−1,0)T , x3(0) = (0,1)T , x4(0) = (0,−1)T and optimization horizon N = 8. Prediction for k = 0
(left) and final trajectories at k = 16 (right)

that avoiding conflicts is easier when the agents are approaching each other in a di-
agonal way. This explains why resolving the conflict is easier in the situation of Fig.
12.3, in which the optimization horizon N = 3 is sufficient in order to stabilize all
P = 4 agents. A further interesting observation in this example is that the resulting
trajectories are not symmetric as in Figs. 12.1 and 12.2. Rather, here one sees the
effect of the sequential ordering, since x1 and x3 approach their respective equilib-
ria directly (with x3 performing a shorter step at time k = 7 in order to avoid the
collision with x1), while x2 and x4 are forced to take small detours. Due to the short
horizons N, most of the conflicts, i.e., the possible collisions, are resolved by the op-
timization at runtime in step (1) and not in the initialization in step (0) of Algorithm
12.3. The only exception is the fourth system starting at x4(0) = (0,−1)T in Fig.
12.2, which at the time of its first optimization in step (0) already knows all other
systems’ predictions. Hence, the simulations nicely illustrate our schemes’ ability
to resolve conflicts at runtime.
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Fig. 12.3 MPC for Example 12.1 with P = 4 systems with initial values x1(0) = (−1,1)T , x2(0) =
(1,−1)T , x3(0) = (1,1)T , x4(0) = (−1,−1)T , optimization horizon N = 3 and different initial
condition as in Fig. 12.2. Prediction for k = 0 (left) and final trajectories at k = 18 (right)

12.7 Conclusion and Future Work

In this chapter we have shown that the noncooperative distributed model predic-
tive control scheme from [14, 13] can be formulated without stabilizing terminal
constraints. An extension of the controllability-based NMPC stability analysis from
[8, 7] yields a sufficient distributed controllabilty condition, ensuring stability and
feasibility. Numerical examples show that the resulting scheme is able to stabilize a
test system with small optimization horizons N and illustrate the schemes’ ability to
resolve conflicts at runtime.

We regard the analysis in this chapter as a first step, which can and needs to be
improved in many ways. The controllability conditions (i) and (ii) required in The-
orem 12.5 are certainly difficult to check for systems more complex than Example
12.1, and even for Example 12.1 with large P a rigorous verification currently ap-
pears out of reach. In fact, the inequality (12.22) resulting from the controllability
condition is a quite strong property by itself in the sense that in each sampling pe-
riod each optimal value function Vp is decreasing. This property is most likely too
demanding in many applications in which one would rather expect that in each step
only some of the Vp decrease while others may even increase. ISS small-gain ar-
guments for large systems as in [3] may be suitable for handling such situations;
however, so far the controllability properties needed to ensure the appropriate small
gain properties of the NMPC closed-loop systems remain unknown.

Another extension will be to relax the requirement of strict sequential optimiza-
tion imposed in Algorithm 12.3. A first step in this direction could be to exploit
the fact that stability can also be expected if the optimization is performed only in
each mth sampling period for m ∈ {1, . . . ,N−1}; cf. [7]. This enables us to set up a
cyclic scheme in which in each sampling period only a subset of systems performs
an optimization. While this reduces the waiting time, it does not completely remove
the sequential order of the optimization. The development of a scheme in which the
optimization is performed completely in parallel remains a major challenge.
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12.8 Appendix

In this section we prove an auxiliary result needed for the analysis of the example
in Sec. 12.6. In Lemma 12.3 we assume that the norm used in the definition of X is
the maximum norm ‖ · ‖∞. For the Euclidean norm, see Remark 12.4.

Lemma 12.3. Let K > 0, R > δ > ū and a trajectory y(·) with ‖y(k)‖∞ ≥ R + δ ,
k ∈ N0 be given and define the set X according to Example 12.1 for P = 2. Then
there exists k ∈ N such that for each x0 /∈ T = [−R,R]2 with ‖x0‖ ≤ K and
(x0,y(0)) ∈X, there is a finite number k∗ ∈ N with k∗ ≤ k and a control u(·) satis-
fying (xu(k,x0),y(k)) ∈X for all k = 0, . . . ,k∗ and xu(k∗,x0) ∈ T .

Proof. Note that (x0,y(0)) ∈ X implies ‖x0− y(0)‖∞ ≥ δ . We construct u(·) in
three steps and start by finding a control sequence such that

min{|xu
1(k1)|, |xu

2(k1)|}< ū (12.24)

holds for some k1 ∈N . If this inequality holds for k = 0, then there is nothing left to
do. Otherwise, at each time k = 0,1,2, . . . such that (12.24) does not hold we choose
one of the following control sequences. If |x0

1− y1(0)| ≥ δ then we set

u(k) =

(
y1(k +1)− y1(k)
−ū sign(xu

2(k))

)
.

which implies |xu
1(k)− y1(k)| = |x0

1− y1(0)| ≥ δ and |xu
2(k)| = |x0

2|− kū for k ≤ k1.
Thus, the trajectory is admissible and (12.24) is satisfied for k1 = ⌊|x0

2/ū|⌋. Note that
|u1(k)| ≤ ū since y1(k + 1)− y1(k) equals the control applied at time k in order to
generate y(·). If |x0

1− y1(0)|< δ then ‖x0− y(0)‖∞ ≥ δ implies that |x0
2− y2(0)| ≥

δ holds and we can do the analogous construction exchanging x0
1 and x0

2, which
implies (12.24) for k1 = ⌊|x0

1/ū|⌋. All in all, this shows that (12.24) can always
be satisfied with k1 ≤ ⌊‖x0‖∞/ū⌋. Furthermore, note that ‖xu(k1)‖∞ ≤ ‖x0‖∞ +
⌊‖x0‖∞/ū⌋ū≤ 2‖x0‖∞ holds.

In the following second step we construct u(k1), u(k1 +1), . . ., u(k2) such that we
approach T as fast as possible until we either reach T or are blocked by y(·). To this
end, we assume without loss of generality |xu

1(k1)|< ū and xu
2(k1) > 0; otherwise we

use symmetric arguments in the sequel. We set

u(k) =

(
−xu

1(k)
−ū

)

for k = k1,k1 +1, . . . ,k2 where k2≥ k1 is the minimal time at which either xu(k2)∈ T
or ‖xu(k2 +1)− y(k2 +1)‖∞ < δ holds. Note that since xu

1(k2) ∈ (−ū, ū)⊂ [−R,R]
and xu

2(k2) = xu
2(k1)− (k2−k1)ū ∈ [−R,R] for (k2−k1)ū ∈ [xu

2(k1)−R,xu
2(k1)+R],

we obtain k2 ≤ k1 + ⌊‖xu(k1)‖∞/ū⌋ ≤ k1 +
⌊
2‖x0‖∞/ū

⌋
.

If xu(k2) ∈ T then we set k∗ = k2 and are done; otherwise, we continue with the
third part of our construction for u1(k2),u1(k2 + 1), . . .. To this end we distinguish
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two cases. The first case is that xu
2(k2)≥ y2(k2)+ δ holds. In this case we set

u(k2) =

(
−xu

1(k2)

y2(k2 + 1)+ δ− xu
2(k2)

)

which implies xu
2(k2 +1) = y2(k2 +1)+δ and thus ‖xu(k2 +1)− y(k2 +1)‖∞ = δ .

Furthermore we have ‖xu(k2 + 1)‖∞ ≤ ‖xu(k2)‖∞ + ū. Observe that by choice of
k2 the relation xu(k2) 6∈ T implies xu

2(k2) > y2(k2)− δ .
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Fig. 12.4 Illustration of the trajectories used in the construction of xu
1.

Now we continue by constructing two alternative trajectories xur
(k) and xul

(k)
for k ≥ k2 +1; cf. Fig. 12.4 (left). At least one of them is admissible and reaches T
in a predetermined number of steps. The first elements of the corresponding control
sequences are

ur(k) =

(
ū

y2(k +1)− y2(k)

)
and ul(k) =

(
−ū

y2(k +1)− y2(k)

)
.

As soon as |xu j

1 (k+1)−y1(k+1)| ≥ δ holds for j ∈ {l,r} and the following control
values, we change the control inputs to

ur
1(k) =




−min{ū,max{xur

1 (k)−δ ,−ū}}, y1(k)+ δ ≤ δ

y1(k +1)+ δ− xu
1(k), otherwise

and ur
2(k) =−ū if xur

2 (k) > R and ur
2(k) = 0 otherwise, and
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ul
11(k) =





min{ū,max{−xur

1 (k)− δ ,−ū}}, y1(k)− δ ≥−δ

y1(k + 1)−δ − xu
1(k), otherwise,

and ul
2(k) = −ū if xul

2 (k) > R and ul
2(k) = 0, otherwise, respectively. We denote the

times at which this is done as kl
3 and kr

3. Observe that for at least one j ∈ {l,r}
we have k j

3 ≤ k2 + ⌈δ/ū⌉ and for the corresponding trajectory we get xu j

2 (k j
3) ≤

xu
2(k2)+δ + ū. Moreover, the choice of u j

1(k) implies that u j(k) is admissible for all

k ≥ k j
3, j ∈ {r, l} and that for each k≥ k2 +1 we have xu j

1 ∈ [−δ ,δ ] for at least one

j ∈ {r, l}. Since after the times k j
3 the trajectories move down as fast as possible, we

obtain xu j

2 (k) ∈ [−R,R] for all k≥ k j
4 with

k j
4 ≤ k j

3 +

⌊
xu

2(k2)+ δ + ū
ū

⌋
≤ k j

3 +

⌊
2‖x0‖∞ + δ + ū

ū

⌋

Without loss of generality let kl
4 ≤ kr

4, which implies

kl
4 ≤ k2 + ⌈δ/ū⌉+

⌊
2‖x0‖∞ + δ + ū

ū

⌋

Then, by construction of ul we have that either xul
(kl

4) ∈ T or y1(kl
4) < 0. In the

latter case our construction implies kr
3 ≤ kl

4. This, in turn, implies

kr
4 ≤ kl

4 +

⌊
2‖x0‖∞ +δ + ū

ū

⌋
+ kl

4− k2 ≤ k2 + 3

⌊
2‖x0‖∞ +δ + ū

ū

⌋
+2⌈δ/ū⌉

At time kr
4 we have xu j

2 (kr
4) ∈ [−R,R] for all j ∈ {r, l}, which together with xu j

1 ∈
[−δ ,δ ] for at least one j ∈ {r, l} implies xu j

1 (kr
4) ∈ T for at least one j ∈ {r, l}.

Hence, at least one of the trajectories reaches T in the time

k∗ = kr
4 ≤

⌊‖x0‖∞
ū

⌋
+

⌊
2‖x0‖∞

ū

⌋
+ 3

⌊
2‖x0‖∞ +δ +2ū

ū

⌋
+ 2⌈δ/ū⌉

It remains to deal with the case xu
2(k2) < y2(k2) + δ and |xu

1(k2)| ≤ ū. Again we
construct two alternative trajectories for k ≥ k2, cf. Fig. 12.4 (right). Recall that
from the construction of k2 and xu

1(k2) 6∈ T the inequality xu
2(k2) > y2(k2)− δ fol-

lows. Since ‖xu(k2)−y(k2)‖∞≥ δ this implies |xu
1(k2)−y1(k2)| ≥ δ . Without loss of

generality we assume xu
1(k2)≤ y1(k2)−δ . We define two different control sequences

for k≥ k2 whose first elements are given as

uu(k) =

(
−ū

0

)
and ul(k) =

(
−ū
−ū

)
.
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Since xu j
, j ∈ {u, l}, moves left with maximal speed, xu j

1 (k) ≤ y1(k)− δ holds, im-

plying feasibility, i.e., (xu j
(k),y(k)) ∈X. Furthermore, this choice implies xuu

2 (k3)−
xul

2 (k3)≥ 2δ at time k3 = k2 + ⌈2δ/ū⌉. Then, for k ≥ k3, we use the controls

uu(k) =

(
min{−xuu

1 (k), ū}
−ū

)
(12.25)

and

ul
1(k) =





−ū, −xul

1 (k)≤ xul

2 (k)+ 2(R− ū)

ū, otherwise
, ul

2(k) =−ū. (12.26)

By kl we denote the minimal time at which ul
1(k

l) = ū holds. Provided that the
resulting trajectories are admissible, they both reach T before time k4 ≤ k2 +⌈
(2‖x0‖+R)/ū

⌉
. Furthermore, they satisfy xuu

2 (k)−xul

2 (k)≥ 2δ for k∈{k3, . . . ,k4}.
Since xul

moves left with maximal speed for k = k3, . . . ,kl and satisfies xul

1 (k3) ≤
y1(k3)−δ , we obtain that the trajectory is admissible at least until time k = kl .

Now assume that there exists k̃ ∈ {kl + 1, . . . ,k4− 1} at which xul
is not admis-

sible, i.e., at which ‖xul
(k̃)− y(k̃)‖∞ < δ holds. Since xul

moves downwards with

maximal speed, this is only possible if y2(k)≤ xul

2 (k)+ δ holds for k ∈ {k3, . . . , k̃}.
Since this implies that xuu

2 (k) ≥ xul

2 (k)+ 2δ ≥ y2(k)+ δ holds, xuu
(k) is admissible

for k = k3, . . . , k̃. On the other hand, ‖xul
(k̃)−y(k̃)‖∞ < δ for k̃≥ kl +1, and a little

computation based on the definition of kl reveals that y1(k) ≤ −δ holds as long as
xuu

(k) /∈ T . Hence, xuu
is admissible until it reaches T and consequently, at least

one of the trajectories is admissible and reaches T in a time

k∗ ≤ k4 ≤
⌊‖x0‖∞

ū

⌋
+

⌊
2‖x0‖∞

ū

⌋
+

⌈
2‖x0‖+ R

ū

⌉

Summarizing, we have shown that u and a finite number k∗ with the required prop-
erties required exist. Since ‖x0

1‖∞ is bounded from above by K, the corresponding
time k∗ satisfies k∗ ≤ k for some suitable k depending on K and R which completes
the proof. ⊓⊔

Remark 12.4. It is also possible to prove Lemma 12.3 using the Euclidean norm ‖ ·
‖2. To this end, one has to assume ‖y(k)‖2 ≥

√
2(R+δ ), which implies ‖y(k)‖∞ ≥

(R +δ ). Moreover, an additional prelimary step is required since ‖x0− y(0)‖2 ≥ δ
does not imply ‖x0− y(0)‖∞ ≥ δ . However, since y(·) is known, this can be eas-
ily obtained in a finite number of steps. Then, one may proceed as in the proof of
Lemma 12.3, since ‖xu(k)−y(k)‖∞≥ δ implies (xu(k),y(k)) ∈X for the Euclidean
norm ‖ · ‖2 as well. Apart from this initialization step, the term ‖x0‖∞ in the esti-
mates for k∗ remains the same.
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3. Dashkovskiy, S., Rüffer, B.S., Wirth, F.R.: An ISS small gain theorem for general networks.
Math. Control Signals Systems 19(2), 93–122 (2007)

4. Giselsson, P., Rantzer, A.: Distributed model predictive control with suboptimality and sta-
bility guarantees. In: Proc. 49th IEEE Conference on Decision and Control (CDC2010), pp.
7272–7277. Atlanta, GA (2010)

5. Grimm, G., Messina, M.J., Tuna, S.E., Teel, A.R.: Model predictive control: For want of a
local control Lyapunov function, all is not lost. IEEE Trans. Automatic Control pp. 546–558
(2005)
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Chapter 13
A Set-Theoretic Method for Verifying Feasibility
of a Fast Explicit Nonlinear Model Predictive
Controller

Davide M. Raimondo, Stefano Riverso, Sean Summers, Colin N. Jones,
John Lygeros and Manfred Morari

Abstract In this chapter an algorithm for nonlinear explicit model predictive con-
trol is presented. A low complexity receding horizon control law is obtained by ap-
proximating the optimal control law using multiscale basis function approximation.
Simultaneously, feasibility and stability of the approximate control law is ensured
through the computation of a capture basin (region of attraction) for the closed-loop
system. In a previous work, interval methods were used to construct the capture
basin (feasible region), yet this approach suffered due to slow computation times
and high grid complexity.

In this chapter, we suggest an alternative to interval analysis based on zonotopes.
The suggested method significantly reduces the complexity of the combined func-
tion approximation and verification procedure through the use of DC (difference of
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convex) programming, and recursive splitting. The result is a multiscale function
approximation method with improved computational efficiency for fast nonlinear
explicit model predictive control with guaranteed stability and constraint satisfac-
tion.

13.1 Introduction

This chapter proposes a method of approximate explicit model predictive control
(MPC) for nonlinear systems. While it is possible to compute the optimal control
law offline for a limited number of cases (e.g., affine or piecewise affine dynam-
ics [5, 20, 29]), it is in general necessary to approximate, and therefore validation
techniques are required for the resulting approximate closed-loop system. In this
chapter, we present a new technique for approximation and certification of stability
and recursive feasibility for explicit NMPC controllers, in which the control law is
precomputed and verified offline in order to speed online computation.

The control law is approximated via an adaptive interpolation using second order
interpolets, which results in an extremely fast online computation time and low data
storage. The resulting suboptimal closed-loop system is verified by computing an
inner approximation of the capture basin and an algorithm is proposed that itera-
tively improves the approximation where needed in order to maximize the size of
the capture basin. The key novelty of this chapter is the use of difference of convex
(DC) programming and zonotope approximation in order to significantly improve
both the computational performance and efficacy of the calculation of the capture
basin.

Methods for the approximation of explicit solutions of nonlinear model predic-
tive control (NMPC) problems have been addressed recently by various authors
(e.g., see [8, 19]). In [8], the authors compute an approximate control law ũ(x) with
a bound on the controller approximation error (‖u∗(x)− ũ(x)‖), from which per-
formance and stability properties are derived using set membership (SM) function
approximation theory. In [19] the authors use multiparametric nonlinear program-
ming to compute an explicit approximate solution of the NMPC problem defined
on an orthogonal structure of the state-space partition. An additional example of the
approximation of explicit solutions of NMPC can be found in [26].

In almost all cases, the suboptimality of the resulting control law (and as a con-
sequence the stability of the feedback system) is valid under various strong assump-
tions. Examples include the approximation of the Lipschitz constant ([8]) and the
availability of global optimization tools ([19]). While these approaches often work
well in practice, in many problems the stability of the closed-loop system (and the
resulting region of attraction) cannot be guaranteed. Thus, in this chapter we exploit
advances in reachability analysis and adaptive interpolation to construct an approxi-
mate explicit control law that encompasses the strengths of the recent works ([8, 19])
while guaranteeing stability and feasibility and preserving a minimal representation
of the control law.
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Extending the results of [30, 31], in this chapter we introduce a constructive al-
gorithm for the approximation of an explicit receding horizon NMPC control law.
We approximate the optimal control law by adaptive interpolation using second or-
der interpolets, while concurrently verifying feasibility and stability of the resulting
feedback system via the computation of an inner approximation of the capture basin
(see, e.g., [12]). In contrast to the capture basin computational method considered in
[12, 31], we develop a mechanism for computing the capture basin using zonotopes
[22, 11, 33] and DC programming [3] that significantly reduces the complexity of
the combined function approximation and verification procedure. Using zonotopes
and DC programming rather than interval analysis [25, 6] additionally leads to an
approximate control law with less storage requirements and a larger verifiable re-
gion of attraction. With the approach we propose, we are able to construct a sparse
approximation of the optimal control law while taking into consideration perfor-
mance loss and the feasibility and stability of the feedback system. Further, since
the solution is defined on a gridded hierarchy, the online evaluation of the control
law is extremely fast, see [30].

The rest of the chapter is arranged as follows: Section 13.2 introduces the NMPC
problem. Section 13.3 provides background on multiscale sparse function approx-
imation and Secs. 13.4 and 13.5 discuss reachability analysis and the proposed
method of calculating the capture basin of an approximation NMPC explicit con-
trol law. Section 13.6 provides a numerical example indicating the effectiveness of
the approach.

13.2 Nonlinear Model Predictive Control

Consider the following finite horizon optimal control problem (NMPC):

J∗(x) = min
u0, . . . ,uN−1

J(u0, . . . ,uN−1,x0, . . . ,xN)

subject to xi+1 = f (xi,ui), ∀i = 0, . . . ,N−1

(xi,ui) ∈ X ×U , ∀i = 0, . . . ,N−1

xN ∈ XF ,

x0 = x,

(13.1)

where xi ∈ Rn is the state of the system, ui ∈ Rm is the control input of the system,
and N is the prediction horizon length. The cost function J takes the form

J(u0, . . . ,uN−1,x0, . . . ,xN) := VN(xN)+
N−1

∑
i=0

L(xi,ui) , (13.2)

where L is the running (stage) cost and VN is the terminal cost.
The system dynamics f : Rn×Rm→Rn is a continuous and differentiable func-

tion, and the objective is to regulate the state of the system to the origin under state
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and control input constraints represented by the (compact) sets X ⊆ Rn, U ⊆ Rm,
respectively. We assume that the terminal set XF is compact and positively control
invariant under a known stabilizing feedback law κF . For the sake of simplicity (as
in [8, 19]), it is assumed that the control input constraint set U is convex, although
the following results can be extended to the nonconvex control input constraint set-
ting.

A dual-mode NMPC control approach is taken, in which the optimal NMPC
control law κ⋆(x) is defined as

κ⋆(x) :=

{
κF(x), if x ∈XF

u⋆
0(x), otherwise

(13.3)

where u∗(x) = u⋆
0(x), . . . ,u

⋆
N−1(x) is an optimal sequence of inputs of NMPC prob-

lem (13.1) for the state x. Following [8, 19], we assume in this chapter that the
optimal receding horizon control law u∗

0(x) asymptotically stabilizes the origin of
the closed-loop system.

Remark 13.1. Note that the proposed approximation and analysis techniques can be
applied to any optimal control problem that generates a smooth control law. We
here use the MPC cost function given in (13.2) because it is a common target for ap-
proximation and because sufficiently fine approximation will result in a stabilizing
control law by construction.

13.3 Multiscale Function Approximation

The method we propose for approximating u⋆
0(x) relies on coarsely gridding the

state space, and then regridding with increasing resolution only the regions which
have not been approximated sufficiently. At the same time, we keep only the grid
points that play a significant role in the function approximation [30].

Define the one-dimensional scaling function with support [−1,1] by

φ(x) :=

{
1−|x| , if x ∈ [−1,1],

0 , otherwise.
(13.4)

In one dimension, we consider a dyadic discretization on the unit interval Ω = [0,1].
The resulting grid Ωl is characterized by the level of discretization l and the index
i. At level l the distance between points is hl = 2−l and the number of points is
N = 2l + 1. The index i determines the location of the grid points according to the
equation

xl,i := i ·hl, 0≤ i≤ 2l.

Given function (13.4), via translation and dilation we get
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φ l,i(x) = φ
(

x− i ·hl

hl

)
(13.5)

where φ l,i represents a family of basis functions with support [xl,i−hl ,xl,i +hl ]. The
family of univariate multiscale functions ψ l,i that make up the hierarchical basis is
given as

ψ l,i = φ l,i,i ∈ Il

where

Il =




{i ∈ N0|1≤ i≤ 2l− 1, i odd}, l > l0,

{i ∈ N0|0≤ i≤ 2l}, l = l0.

A multivariate multiscale basis on the unit cube Ω d = [0,1]d , where d is the di-
mension, can be constructed by tensor product expansion of the one-dimensional
multivariate functions ψ l,i, i.e.

ψ l,i =
d

∏
j=1

ψ l,i j
(13.6)

with the d-dimensional multi-index i ∈ Id
l and

Id
l =

{ {
i ∈Nd

0 |0≤ i≤ 2l
}
\
{

i ∈Nd
0 |0≤ i≤ 2l , i j even ∀ j ∈ [1,d]

}
l > l0

{i ∈ Nd
0|0≤ i≤ 2l} l = l0

Id
l is the full grid less those points seen at previous levels, as depicted in Fig. 13.1.

The d-dimensional hierarchical function spaces of piecewise d-linear functions can
be defined as W d

l = span{ψ l,i : i ∈ Id
l }. Let

φ l,i(x) =
d

∏
j=1

φ l,i j
(x j)

the family of d-dimensional nodal basis functions and V d
l = span{φ l,i : 0 ≤ i ≤

2l} the d-dimensional nodal function space. It holds that V d
l =

⊕
k≤l W d

k where
⊕

denotes the direct sum. Therefore, any function ul ∈ V d
l can be represented in the

hierarchical basis by

ul(x) =
l

∑
k=l0

∑
i∈Id

k

wk,i ·ψk,i(x)

where coefficients wk,i ∈ R (hierarchical details) correspond to the difference be-
tween the true function value ul(xk,i) and the value of the approximate function one
level below.
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Fig. 13.2 Set of hypercubic regions R̄.

In [30], it has been shown that the function approximation by adaptive hierarchi-
cal basis function expansion generates a grid (of hypercubes (Fig. 13.2)) spanned
by an interpolation by barycentric coordinates. Given a set R̄ of hypercubic regions,
for each hypercube R it holds that

û(x) = ∑
v∈extr(R)

û(v) fv(x), if x ∈ R. (13.7)

where extr(R) are the extreme points of R and fv(x) are compactly supported basis
functions of the form (13.6) centered at the corners of the hypercube R.

Theorem 13.1. Given any hypercube R of R̄, if û(v)∈U, ∀v∈ extr(R) and U is con-
vex, then û(x) ∈U, ∀x ∈ R. Moreover, if problem (13.1) is convex, then, feasibility
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at vertexes v of R is necessary and sufficient in order to get feasibility for all x ∈ R,
i.e., g(x, û(x))≤ 0, ∀x ∈ R.

Proof: The result is obtained by exploiting the barycentricity of the interpolation.
See [30] for details.

Note that, in the general nonlinear case, the constraint satisfaction at the vertexes
of R is not sufficient in order to prove their satisfaction in the entire box. This is
because g and h are in general nonconvex. However, if U is convex, then control
constraint satisfaction at the vertexes of R guarantees their satisfaction in R.

Summarizing, we need an alternative method for verifying the stability and state
constraints satisfaction of system xi+1 = f (xi,ui) in closed loop with û(x). In the
following section, we present reachability analysis of nonlinear systems as a possi-
ble solution.

13.4 Reachability

The exact computation of the set

Φ = f (Ω) (13.8)

given an initial set Ω ⊆Rn and a map f : Rn→Rn, is not possible in general. Taking
this into account, the objective is to construct an outer approximation of Φ in such
a way that the set is representable on a computer and the overestimation is kept as
small as possible [22]. Several solutions have been proposed in the literature, and
in the following sections we provide an overview of existing methods that apply
for nonlinear functions f before proposing a new method for guaranteeing tight
overbounds.

13.4.1 Interval Arithmetic

Given S1,S2⊆Rn the Minkowski sum is defined as S1⊕S2 = {x+y : x∈ S1,y∈ S2}.
Given a,b ∈ R, with a ≤ b, [a,b] denotes the interval {x : a ≤ x ≤ b}. The center
of the interval [a,b] is denoted by mid([a,b]) = a+b

2 . Let I be the set of all inter-
vals [a,b], i.e. I = {[a,b] : a,b ∈ R,a ≤ b}. The set of all interval vectors in Rn

is denoted by In. The unitary interval [−1,1] is denoted by B. A box is an in-
terval vector and a unitary box, denoted by Bm, is a box composed of m unitary
intervals. With a slight abuse of notation, when the superscript is not indicated,
B denotes a generic unitary box. Given a box X = [a1,b1]× [a2,b2] . . .× [an,bn],
mid(X) = (mid([a1,b1]), . . . ,mid[an,bn])

T denotes the midpoint (or center) of X,
diam(X) = (b1−a1, . . . ,bn−an)

T and rad(X) = diam(X)/2. Interval arithmetic is
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based on operations applied to intervals. An operation • can be extended from real
numbers to intervals, i.e., given X1,X2 ∈ I, X1 •X2 = {x1 • x2 : x1 ∈ X1,x2 ∈ X2}.
The four basic interval operations as well as the interval extension of standard func-
tions (sin,cos, tan,arctan,exp, ln, |,|sqrt), are defined in [25].

Definition 13.1. (Natural interval extension [21]) If f : Rn→Rn is a function com-
putable as an expression, algorithm or computer program involving the four elemen-
tary arithmetic operations and standard functions, then a natural interval extension
of f , denoted by 2 f , is obtained by replacing the occurrence of each variable by the
corresponding interval variable and by executing all operations.

Theorem 13.2 ([21]). Given a function f : Rn→Rn and any box X⊆Rn within the
domain of f , a natural interval extension 2 f : In→ In of f satisfies f (X)⊆2 f (X).

Definition 13.2. (Taylor interval extension of degree k) Let f : Rn→ Rn be a k +1
times differentiable function, X ⊆ Rn any box within the domain of f and y ∈ X.
The Taylor interval extension of f of degree k is given by

�k f (X) =
k

∑
i=0

1
i!
∇i f (y) · (X− y)i + �rk(X,X,y)

where ∇i f (y) is the ith order differential of f at the point y and �rk is an interval
extension of the Taylor remainder

rk(x,ξ ,y) =
1

(k +1)!
∇k+1 f (ξ ) · (x− y)k+1.

By substituting X for ξ we obtain an overestimation of the remainder. Usually, y
is chosen to be the midpoint of the box X, and natural interval extension is used to
bound the remainder.

Theorem 13.3. Let f : Rn→Rn be a k+1 times differentiable function and X⊆Rn

any box within the domain of f . A Taylor interval extension of f of degree k satisfies
f (X) ⊆2

k f (X).

Because of the special form of rk, in practice the Taylor remainder usually de-
creases as |x−y|k+1. Hence if |x−y| is chosen to be small, then the interval extension
of the Taylor remainder gets smaller for increasing k, i.e., higher order Taylor inter-
val extensions yield better enclosures on small boxes [24]. A comparison between
natural interval extension and Taylor interval extension of degree 0 (yellow) and 9
(green) is given in Figs. 13.3 and 13.4. While Fig. 13.3 shows the advantage of Tay-
lor interval extension on a small box, Fig. 13.4 shows its limits over big boxes. In
this work, interval arithmetic has been implemented using INTLAB [27].

The main drawback of interval analysis is that it always outer bounds the image
of a box with a box. The use of more complex domains can reduce the conservatism.
For this reason, the use of zonotopes as the class of approximates is considered in
the next section.
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Fig. 13.3 In this example
we considered the function
f defined in (13.14). The
starting set X is depicted on
the left. On the right, samples
of f (X) are depicted in black
while the red, yellow and
green boxes represent the
natural interval extension, the
Taylor interval extension of
degree 0 and 9 (y = mid(X))
respectively.
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Fig. 13.4 In this example
we considered the function
f defined in (13.14). The
starting set X is depicted on
the left. On the right, samples
of f (X) are depicted in black
while the red, yellow and
green boxes represent the
natural interval extension, the
Taylor interval extension of
degree 0 and 9 (y = mid(X))
respectively.
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13.4.2 Zonotopes

Zonotopes are centrally symmetric convex polytopes. Given a vector p ∈ Rn and a
matrix H ∈ Rn×m, the zonotope Z of order n×m is the set

Z = p⊕HBm = {p +Hz|z ∈ Bm}.

The zonotope Z is the Minkowski sum of the line segments defined by the columns
of the matrix H translated to the central point p. Z can be described as the set
spanned by the column vectors of H

Z = {p +
m

∑
i=1

α ihi|− 1≤ α i ≤ 1}

where hi, also called the line segment generator, is the ith column of H. When the
matrix H is diagonal, the zonotope is a box composed of n intervals. The construc-
tion of zonotopes based on the Minkowski addition of convex polytopes is described
in [16] and here adopted and implemented using the MPT toolbox [23]. An example
of a two-dimensional (2D) zonotope is depicted in Fig. 13.5.

The image of a zonotope Z under a nonlinear function is not, in general, a zono-
tope. Kühn developed a procedure that guarantees a tight approximation by bound-
ing f (Z) with a zonotope [22]. The following theorem introduces the zonotope in-
clusion operator that is needed for computing Kühn’s zonotope extension.
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Fig. 13.5 A 2D zonotope.
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Theorem 13.4. (Zonotope inclusion) Consider a family of zonotopes represented by
Z = p⊕MBm, where p ∈Rn is a real vector and M ∈ In×m is an interval matrix. A
zonotope inclusion, denoted by ⋄(Z), is defined by

⋄(Z) = p⊕ [mid(M) G]

[
Bm

Bn

]
= p⊕ JBm+n,

where G ∈ Rn×n is a diagonal matrix that satisfies

Gii =
m

∑
j=1

diam(Mi j)

2
, i = 1, . . . ,n.

Under these definitions it results that Z⊆ ⋄(Z).

Theorem 13.5. (Zonotope extension) Consider a function f : Rn→Rn with contin-
uous derivatives and a zonotope Z = p⊕HBm. Given an interval matrix M ∈ In×m

such that M⊇∇ f (Z)H, it results that

f (Z)⊆ f (p)⊕⋄(MBm).

This theorem is a particular case of Kühn’s method (see Proof in [2]). Note that,
∇ f (Z)H, multiplication of a matrix of sets by a matrix, is a matrix of sets. A possi-
ble outer bound is M = �∇ f (�Z)H.

The zonotope extension represents a Taylor extension of order 0, where the re-
mainder has been evaluated on Z. A comparison between zonotope Taylor extension
of order 0 and Taylor interval extension of order 0 is given in Fig. 13.6. As expected,
zonotopes better approximate the output set.

A first order Taylor zonotope extension was proposed in [11]

f (Z)⊆ f (p)⊕∇ f (p)(Z− p)⊕ cR⊕ [ZQ ZH ]B
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Fig. 13.6 In this example we
considered the function f de-
fined in (13.14). The starting
set Z is depicted on the left.
On the right, samples of f (Z)
are depicted in black while
the red and yellow zonotopes
represent the Taylor interval
extension of degree 0 and the
zonotope extension of degree
0 respectively.
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where cR and [ZQ ZH ] provide a less conservative approximation of the remainder
by making use of some interval analysis properties (see Eq. (14) in [11] for the
definition of cR and [ZQ ZH ]).

A Taylor zonotope extension of order k can been obtained as follows:

f (Z)⊆ f (p)⊕∇ f (p)(Z− p)⊕ cR ⊕ZQB⊕
k

∑
i=3

1

i!
∇i f (p) · (�Z− p)i⊕�rk(�Z,�Z, p).

Note that cR⊕ZQB represents the second order Taylor expansion term computed
at p, center of the zonotope Z (see [11] for details). The higher order terms have been
obtained by applying the Taylor interval extension. Due to over-approximation of
zonotopes with boxes (i.e. (Z− p)i is replaced by (�Z− p)i), there is no guarantee
that higher order Taylor zonotope extensions will produce tighter enclosures than
low order ones.

A comparison between zonotope Taylor extension of order 0 (red) and order 1
(yellow) (computed as in [11]) is given in Figs. 13.7 and 13.8. In Fig. 13.7, as one
would expect, the first-order extension is better, but in Fig. 13.8 it is the opposite.
This depends on the dynamics f (Eq. (13.13) in the case of Fig. 13.7 and Eq. (13.14)
in Fig. 13.8) and the size of the starting set Z, i.e., the larger the set, the worse the
approximation. Furthermore, the use of higher order extensions does not guarantee
improvement a priori. In Figs. 13.9 and 13.10, starting sets that are boxes (and not
generic zonotopes) have been considered. In the first figure, higher-order extensions
do better while in the second the opposite is observed. Again, this depends on the
dynamics f and the size of the starting set Z.

It is important to note that if a linear system is considered, zonotopes provide an
exact description of the reachable set, unless a bound on the number of line gener-
ators is imposed. If the system is instead nonlinear, and the starting set is a small
box, then high order extensions are generally better than low order ones, although
the dynamics of the system plays an important role in determining which approach
provides the best approximation. The drawback of high-order extensions is the need
to compute the derivatives∇i f , i = 1, · · · ,k + 1. For this reason, we are interested
in finding other techniques that are less computationally expensive while still rea-
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Fig. 13.7 In this example we
considered the function f de-
fined in (13.13). The starting
zonotope Z is depicted on
the left. On the right, sam-
ples of f (Z) are depicted in
black while the red and yel-
low zonotopes represent the
Taylor zonotope extension of
degree 0 and 1 (computed as
in [11]) respectively.
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Fig. 13.8 In this example we
considered the function f de-
fined in (13.14). The starting
zonotope Z is depicted on
the left. On the right, sam-
ples of f (Z) are depicted in
black while the red and yel-
low zonotopes represent the
Taylor zonotope extension of
degree 0 and 1 (computed as
in [11]), respectively.
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Fig. 13.9 In this example
we considered the function
f defined in (13.14). The
starting box Z is depicted on
the left. On the right, samples
of f (Z) are depicted in black
while the red, yellow and
green zonotopes represent the
Taylor zonotope extension of
degree 0, 1 (computed as in
[11]), and 5, respectively.
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Fig. 13.10 In this example
we considered the function
f defined in (13.13). The
starting box Z is depicted on
the left. On the right, samples
of f (Z) are depicted in black
while the red, yellow and
green zonotopes represent the
Taylor zonotope extension of
degree 0, 1 (computed as in
[11]), and 8, respectively.
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sonably good in approximating the real set. In next section, we consider a method
based on DC programming that provides a better first order zonotope Taylor exten-
sion than the one proposed in [11] when the function f is C2.
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13.4.2.1 DC Programming

Definition 13.3 (DC function). [17] Let Ω be a convex subset of Rn. A real-valued
function f : Ω → R is called DC (difference of convex) on Ω , if there exist two
convex functions g,h : Ω →R such that f can be expressed in the form

f (x) = g(x)− h(x).

If Ω = Rn, then f is simply called a DC function.

Every continuous function can be approximated by a difference of two convex func-
tions (DC functions) ([17]) and every C2-function is a DC function ([32]). Even if f
is a C2-function, finding a DC decomposition of f —namely, the functions g and h—
is often a challenging problem, although suitable procedures exist. In this work we
use the method described in [1]. Given f : Ω → R and recalling that a C2-function
is convex in Ω if and only if∇2 f (x) ≥ 0,∀x ∈Ω , we search for a parameter α ≥ 0
such that ∇2 f (x) > −2αI,∀x ∈Ω . Then f (x) = g(x)−h(x) is a DC function with
g(x) = f (x)+ αxT x and h(x) = αxT x.

Programming problems dealing with DC functions are called DC programming
problems. In [3] the authors propose a DC programming-based method for con-
structing a tight outer approximation of f (Z) (where f is a nonlinear C2 function
and Z a zonotope). First they linearize f and compute the image of Z under this
linearization. A parallelotope that bounds the approximation error between f and
its linearization for the given set Z is then added to the image. By exploiting the
convexity of g(x) and h(x), a tighter approximation than the one achievable by sim-
ply bounding the remainder of the first-order Taylor approximation is thus obtained.
The results are summarized in the following.

Definition 13.4 ([3]). Let f (x) : Rn→Rn be a nonlinear differentiable function and
Z = p⊕HBm a zonotope. Given f L(x) = f (p)+∇ f (p)(x− p), the error set ε is
defined as

ε = {e ∈ Rn : e = f (x)− f L(x),x ∈ Z}.

Lemma 13.1 ([3]). Let Z = p⊕HBm be a zonotope and f (x) : Rn → Rn a non-
linear DC function, i.e. f (x) = g(x)− h(x), with g and h convex. Let gL

i (x) =
g(p) +∇g(p)(x− p), hL

i (x) = h(p)+∇h(p)(x− p) and define the parallelotope
ε̄ as

ε̄ = {x ∈ Rn : γ−
i ≤ xi ≤ γ+

i , i = 1, . . . ,n}, (13.9)

with

γ+
i = max

x∈Z
(gi(x)− hL

i (x)− f L
i (x))

γ−
i = min

x∈Z
(gL

i (x)− hi(x)− f L
i (x)).

Then, the parallelotope ε̄ is an outer bound of the set ε, i.e., ε ⊆ ε̄ .
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Fig. 13.11 Comparison of a
DC zonotope (cyan) with a 1st

order one (yellow, computed
as in [11]) calculated for a
big starting box (blue). The
black dots represent sampling
of f (Z), with f defined in
(13.14).
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Theorem 13.6 ([3]). Let Z = p⊕HBm be a zonotope and f (x) : Rn → Rn a DC
function. Then

f (Z)⊆ f L(Z)⊕ ε̄.

Theorem 13.6 is the main result of [3] and shows how to bound the image of a
zonotope under a nonlinear DC function. A comparison betweeen DC programming
(cyan) and first-order Taylor zonotope extension (yellow, computed as in [11]) is
provided in Fig. 13.11. In this case, the DC programming-based approach produces
a better approximate. Several experiments confirmed this tendency.

Summarizing, DC programming is generally better than first order Taylor zono-
tope extension. If the starting set is small, then high order zonotope extensions could
be better. The main drawbacks of the latter approach are the computational complex-
ity and the efficacy just for small starting sets. The reason is that Taylor approxima-
tion is a local property, i.e., it is accurate around mid(Z) but gets worse as soon as
the set becomes large. In any case, zonotopes have an intrinsic limitation in that,
being symmetric and convex, they are poor at bounding nonconvex sets, while, in
general, the output of f (Z) is nonconvex.

In this chapter, we use reachability analysis in order to evaluate the image of the
sets R ∈ R̄ introduced in Sec. 13.3 through the nonlinear dynamics of the system
in closed-loop with the approximate MPC control law. What is important to note is
that R can be arbitrarily big a priori. For this reason, in the next section we propose
a method for partitioning R in subsets. A similar idea has been proposed in [13].
We apply DC programming to each one of the subsets and the union of the output
sets is used to contain f (R). This approach should provide better performance be-
cause the starting sets are smaller and the output, being a union of zonotopes (hence
not necessarily convex anymore), could be a tighter approximation to the real set.
DC programming is preferred to high order zonotope extensions for computational
reasons.

13.4.3 Splitting the Starting Set

First of all, we introduce the operator bisectk(·) (see [33] for details) that splits
a zonotope into two. Given Z = p⊕HBm the operator bisectk(Z) generates two
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Fig. 13.12 An example of a
split. bisect(Z).

subzonotopes

ZL = (p− hk

2
)⊕ [h1 . . .

hk

2
. . .hm]Bm

ZR = (p +
hk

2
)⊕ [h1 . . .

hk

2
. . .hm]Bm

where hk is the kth column of H. Figure 13.12 shows an example of the operator
bisectk(Z) applied to the zonotope Z in Fig. 13.5. In this case, ZL and ZR intersect.
This is because the line segment generators h1, . . . ,hm are not linearly independent.
If H ∈ Rm×m, with rank(H) = m, then, bisectk(Z) provides two subzonotopes that
do not overlap. As stated above, given a generic nonlinear function f , zonotope ex-
tensions as well as DC programming work better on smaller boxes. This is because
Taylor approximation is a local property, i.e., it is effective for a neighborhood of
mid(Z). How big this neighborhood is depends on how close to linear the system
is. For this reason, the approach we propose consists of splitting more where the
system in more nonlinear, i.e., where the Taylor approximation is less effective. We
evaluate this by considering ε̄ , the remainder of the first order extension with the DC
programming-based approach. The procedure is summarized in Algorithm 13.1. A
comparison between DC programming with Z split into 5 and 10 subzonotopes is
reported in Table 13.1 and is depicted in Fig. 13.13. The case with 10 zonotopes
produces, as expected, a tighter approximation (smaller volume) at the expense of a
higher computational time and a higher number of evaluations.

Table 13.1 Algorithm 13.1. Comparison between the case of 5 and 10 splits. The algorithm has
been applied in combination with the DC programming-based approach.

# of Zi in output # of evaluated Zi Comp. Initial Final
time (s) Volume Volume

DC prog. 5 17 2.28 181.1 6.47

DC prog. 10 37 5.01 181.1 3.06
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Algorithm 13.1 Splitting the starting set by using the ε̄ criteria
Require: Nonlinear function f : Rn→ Rm, a starting set Z and ns, number of required splits.
Ensure: Union of ns zonotopes, which is an outer approximation of f (Z).
1: Compute ZO, outer approximation of f (Z) using DC programming.
2: Stack = Z, Stackout = ZO.
3: while length(Stackout )≤ ns do
4: Find in Stackout the zonotope ZOi with the biggest ε̄ (see (13.9) for the definition) in terms

of volume.
5: Select from Stack Zi = pi⊕HiBp, the starting zonotope associated with ZOi .
6: for j = 1 to p do
7: Generate ZL

i j and ZR
i j by applying the operator bisect(·) to the jth column of matrix Hi.

8: Compute ZL
Oi j

and ZR
Oi j

, outer approximations of f (ZL
i j) and f (ZR

i j).

9: Calculate the volumes of ε̄L
i j and ε̄R

i j.
10: end for
11: Find the index j with the smallest sum of volumes of ε̄L

i j and ε̄R
i j.

12: Stack = (Stack\{Zi})∪{ZL
i j ,Z

R
i j}.

13: Stackout = (Stackout\{ZOi})∪{Z
L
Oi j

,ZR
Oi j
}.

14: end while

Fig. 13.13 In this example
we considered the function
f defined in (13.14). The
starting sets Z are depicted
on the left. In one case, Z
has been split into 5 while in
the other into 10. The splits
have been done according to
Algorithm 13.1. The results
are depicted on the right, in
cyan the output obtained with
5 splits while in red the one
with 10 splits.

13.5 Capture Basin

Consider the following system

xi+1 =





f (xi,κ f (x)), ∀x ∈ XF

f̄R(xi), ∀x ∈ R,R * XF

(13.10)

the system xi+1 = f (xi,ui) in closed-loop with the approximated control law (13.7),
for all sets R ∈ R̄ under the dual mode approach. Given (13.10), we define with Rs

the capture basin [4, 28], i.e., the set of initial states such that the terminal invariant

304 D.M. Raimondo et al.

     irmgn.ir



Algorithm 13.2 Computation of the capture basin
Require: Discrete time system (13.10) and R, set of all hypercubic regions.
Ensure: Capture basin Rs.
1: Initialize Rs =XF and Ξ = {R : R⊆ R̄, R 6⊆ Rs}.
2: while Ξ 6= ∅ do
3: Xtemp = Rs.
4: for all R ∈ Ξ , compute an outer approximation RO(1) of the 1-step ahead reachable set by

using Algorithm 13.1.
5: Add to Xtemp all the boxes R that satisfy RO(1) ⊆ Rs. Xtemp represents an inner approxima-

tion of the 1-step backward reachable set of Rs.
6: Set Rs = Xtemp.
7: Ξprec = Ξ .
8: Update Ξ , as Ξ = {R : R⊆ R̄, R 6⊆ Rs}.
9: if Ξprec == Ξ then

10: Return Rs.
11: end if
12: end while

set XF is reached in finite time while at the same time satisfying the state and the
control constraints X and U . Note that, since system constraints are satisfied in
XF and XF is by definition invariant for the closed-loop system (13.10), one has
Rs ⊇XF .

The exact computation of the capture basin Rs is a difficult problem for the case
of nonlinear systems. For this reason we suggest Algorithm 13.2 to compute an
inner approximation of Rs. Algorithm 13.2 makes use of Algorithm 13.1. With Al-
gorithm 13.2 we check which boxes R belong to Rs. Since the interpolated control
law guarantees the satisfaction of the control constraints if U is convex (see [30]),
and state constraint X are satisfied by requiring R̄⊆ X , Algorithm 13.2 has just to
check from which boxes the set XF is attainable in finite time.

13.5.1 Approximate Explicit NMPC

In the following we introduce a recursive algorithm for multiresolution approxima-
tion of explicit nonlinear model predictive control laws. The algorithm is initialized
with a user-defined coarse uniform grid before a dyadic refinement strategy is used
to improve the approximation to a specified accuracy. Exploiting the fact that the
state space can be decomposed into a union of hypercubes R (with respect to the
approximate receding horizon control law), the algorithm restricts the dyadic re-
finement to the hypercubes intersecting the current invariant set. In this way the
basin of attraction is constructed from the inside out (starting from the terminal set).
The procedure is summarized in Algorithm 13.3. The algorithm requires the NMPC
problem (13.1) and the NMPC cost function (13.2). The index set Λ is initialized
at level l0 along with all indices and details. The set of stored detail coefficients is
given by the set w. When the grid is refined, Λ stores the levels of resolution k and
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Algorithm 13.3 Adaptive Hierarchical Approximate NMPC
Require: NMPC problem (13.1), NMPC Cost Function (13.2), l0, and lmax.
Ensure: detail coefficients w and index set Λ such that the system xi+1 = f (xi,ui) in closed-loop

with the approximate control law û(x) (see (13.7)) has guaranteed feasibility and stability over
the capture basin Rs.

1: Initialize the index set Λ = {(k, i) : i ∈ Ik ,k = l0} and the initial set of hypercubes
2: Initialize the capture basin Rs = XF and the set of intersecting hypercubes Rc = {R ∈ Ractive :

R∩Rs 6= ∅} where Ractive is the set of hypercubes not contained within Rs

3: Compute the initial details w = {wk,i : (k, i) ∈Λ} by solving the NMPC problem (13.1) point-
wise at the vertices of all R ∈ Ractive

4: while Rc 6= ∅ do
5: Compute the capture basin Rs with Algorithm 13.2.
6: Recompute the set of candidate refinement hypercubes Rc = {R∈ Ractive : R∩Rs 6= ∅, lR ≤

lmax} where lR is the level of the hypercube
7: Refine all hypercubes R ∈ Rc

8: Update Ractive and define the set of new vertices as Λn

9: Solve the NMPC problem (13.1) at the new vertices and compute the new detail coefficients
wn

10: Update the index set Λ = Λ ∪Λn

11: Update the detail set w = w∪wn

12: end while

indices corresponding to the set of hierarchical details that are not discarded due
to being initial conditions not feasible for problem (13.1). The maximum level of
resolution is given as lmax. The capture basin is computed using Algorithm 13.2.
The set of hypercubes Rc intersecting Rs represents the set of refinement candidate
sets. Ractive is the set of hypercubes not contained within Rs; note that Rc ⊆ Ractive.
See [30] for details about the complexity of the real-time implementation of the
approximate control.

The main theorem is now stated. It proves that Algorithm 13.3 always provides
a stabilizing receding horizon control law and verifiable region of attraction for
the NMPC problem (13.1). Note that we adopt a dual mode strategy, i.e., once the
terminal set is attained, the stabilizing feedback law defined in XF is applied.

Theorem 13.7. Let û0 be the resulting receding horizon approximate control law
computed from Algorithm 13.3 for the NMPC problem with cost (13.2), l0 ∈ N, and
lmax ∈N. The following properties hold for û0:

a) Asymptotic stability to the origin for all x0 ∈ Rs

b) û0 ∈ U for all x ∈ Rs

c) For all x0 ∈ Rs, xi ∈ X for all i = 1,2,3, . . .
d) Rs ⊇XF

e) As lmax→∞, then û0→ u∗
0 and Rs→R whereR is the maximum invariant set

for (13.1).

See proof of Theorem 12 in [31].
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13.6 Numerical Example

Consider the following two-dimensional continuous-time nonlinear system (e.g., see
[10, 19, 9]):

ẋ1(t) = x2(t)+ [0.5 +0.5x1(t)]u(t) (13.11)

ẋ2(t) = x1(t)+ [0.5−2x2(t)]u(t) (13.12)

It is well known (see [10]) that the origin of the system governed by (13.11) and
(13.12) is unstable, and that the linearized system is stabilizable (but not control-
lable).

In consideration of the NMPC problem (13.1), the system (13.11) and (13.12)
is discretized using a forward difference Euler approximation with sampling time
T = 0.1. The input and state constraint sets are U = {u∈R : |u| ≤ 2} and X = {x∈
R2 : ||x||∞ ≤ 1}. The cost function is defined over a prediction horizon of length
N = 15 as

J(u0, . . . ,uN−1,x0, . . . ,xN) :=xT
NPxN +

N−1

∑
i=0

xT
i Qxi +uT

i Rui

where

Q =

[
0.01 0

0 0.01

]
, R = 0.01, P =

[
19.6415 13.1099

13.1099 19.6414

]
.

The terminal penalty matrix P as well as the auxiliary controller u =−Kx, are com-
puted using a linear differential inclusion (LDI, see [7]), in place of the original non-
linear system, and thus determine an invariant ellipsoid XF = {x ∈ R2 : xT Px ≤ 1}
for an uncertain linear time-varying system. With l0 = 2 and lmax = 8, we compute
a stabilizing control law using Algorithm 13.3. In Table 13.2 we compare the re-
sults obtained by computing the capture basin with pure interval arithmetic (i.e.,
the splitting procedure has not been used) and Algorithm 13.1. As we can see, Al-
gorithm 13.1 with 5 and 10 splits provides a capture basin that is sligthly bigger
than the one obtained with interval arithmetic but, at the same time, the number of
points describing the interpolated control law is 40% less. This motivates the use
of Algorithm 13.1 instead of pure interval arithmetic. Note that, by the comparison
to Algorithm 13.1 with 5 and 10 splits, we conclude that the use of more than 10
splits will not add further value since it will imply more computational effort for a
very small improvement in the volume of the capture basin. It is important to note
that the number of splits necessary to better describe the capture basin is problem
dependent. In Figure 13.14 and Figure 13.15 the approximate receding horizon con-
trol law and an approximation of the capture basin, obtained with Algorithm 13.1
and 10 splits are shown.
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ACADO [18] Toolkit has been used in order to solve the pointwise NMPC prob-
lem (13.1), while MPT toolbox [23] and the INTLAB interval toolbox [27] have
been used to recursively compute the capture basin and the outer approximations.
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Fig. 13.14 Approximate control law û0(x).

13.7 Conclusion

The approximate explicit NMPC method we have presented combines an adaptive
hierarchical gridding scheme with a verification method based on reachability anal-
ysis. The approach approximates the optimal control law directly, and because of the
basis functions used to build the function approximation, can be tuned in order to
control the complexity and accuracy of the solution. This ability to guarantee a level
of accuracy at the grid points enables an adaptive approach based on thresholding

Table 13.2 Comparison between pure interval arithmetic and Algorithm 13.1.

# of points describing û0(x) capture basin volume

Interval analysis 5808 2.5857

5 splits 3571 2.6035

10 splits 3439 2.5996

308 D.M. Raimondo et al.

     irmgn.ir



−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x
1

x 2

Fig. 13.15 Feasible and stable region.

that can lead to sparse representations of the explicit control law, while preserv-
ing guaranteed feasibility and stability of the solution. By employing reachability
methods based on zonotopes and DC programming, the complexity of the function
approximation and verification procedure is significantly decreased. A direct result
of this reduction in complexity is a smaller storage requirement for the receding
horizon control law and a larger verifiable region of attraction.

Appendix

13.7.1 Models Used in the Examples

The examples given in Sec. 13.4 are based on the following models.

Model 1:




x1(k +1) = 3x1(k)−
x1(k)2

7
− 4x1(k)x2(k)

4 + x1(k)

x2(k +1) =−2x2(k)+
3x1(k)x2(k)

4 + x1(k)

(13.13)

Model 2:
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



x1(k + 1) = x1(k)+ 0.4x2(k)

x2(k + 1) =−0.132e(−x1(k))x1(k)−0.213x1(k)+ 0.274x2(k)
(13.14)
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Chapter 14
Towards Parallel Implementation of Hybrid
MPC—A Survey and Directions for Future
Research

Daniel Axehill and Anders Hansson

Abstract In this chapter parallel implementations of hybrid MPC will be discussed.
Different methods for achieving parallelism at different levels of the algorithms will
be surveyed. It will be seen that there are many possible ways of obtaining paral-
lelism for hybrid MPC, and it is by no means clear which possibilities should be
utilized to achieve the best possible performance. This question is a challenge for
future research.

14.1 Introduction

Speed in numerical computations has increased dramatically over a long period of
time. This is due partly to increase of processor performance in computers and partly
to development of more sophisticated algorithms and methods. However, for the
last five years single-core processor performance has not significantly increased. To
compensate for this multicore and multiprocessor computers have seen increased
use. In addition to this clusters and grids have emerged as another way to speed
up computations. Multicore and multiprocessor computers typically have only few
cores and processors, whereas clusters and grids can be composed of hundreds of
processors distributed over a significant number of computers. It is clear that these
new architectures pose new challenges on how algorithms for numerical computa-
tions should be designed. If care is not taken, further potential speedup will not be
fulfilled.
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Model predictive control (MPC) is a popular control strategy that has been used
in many applications for a long time. It is hard to say exactly when MPC was in-
vented, but probably the first patent was granted to Martin-Sanchez in 1976 [62].
An early publication in academia containing the basic ideas was presented in 1963
by Propoi [62]. There are also some methods similar to MPC, but with different
names. One of the most wellknown ones is dynamic matrix control (DMC), [31].
Traditionally, MPC has involved computation of the solution to a relatively demand-
ing optimization problem that has to be solved on-line for each sampling interval,
[62]. At a fairly high computational expense it is possible for small scale examples
to precompute the optimal feedback off-line [16, 20, 36, 37]. The benefit of that ap-
proach is that the on-line effort is reduced to the evaluation of a look-up table. The
applications of MPC are many, see [46, 71] for surveys. In recent years work has
been carried out to generalize MPC to so-called hybrid systems, [21]. For these sys-
tems the computational demand is even higher. Hybrid systems have applications in,
e.g., transportation, logistics, economics, process control, building control, airplane
routing and communications.

In recent years there has been a trend in the control community to develop dis-
tributed algorithms for control. There are several reasons for this. Often systems
to be controlled can be decomposed in a natural way, and then it is reasonable to
also distribute the controllers according to this decomposition. This means that each
controller is only concerned with a small subsystem. Sometimes the controllers of
the different subsystems need to be coordinated in some fashion in order to obtain
reasonable overall performance of the controlled system. Despite this cost for coor-
dination it has been seen in many cases that global optimality still can be obtained
and at a lower computational cost compared to if there had been one centralized
controller [75]. This type of distributed control has much in common with parallel
implementations. One of the few references available for the hybrid set-up is [13],
where a continuous time hybrid optimal control problem is solved using simula-
tions. In [67] it was shown that an augmented Lagrangian approach could deliver a
feasible solution in an example. For other examples, it has been shown in [65, 77]
that distributed hybrid MPC is suboptimal in general.

The remaining part of the chapter is organized as follows. First a brief review of
hybrid MPC will be given in Sec. 14.2. In Sec. 14.3 different optimization methods
for solving hybrid MPC problems will be discussed. Then, in Sec. 14.4, different
approaches for parallelization will be reviewed, and their potential applicability to
hybrid MPC will be investigated. Finally, in Sec. 14.5, conclusions will be pre-
sented together with recommendations for future research. This chapter will only
consider the discrete-time setting of hybrid MPC. For references to hybrid control
in continuous-time the reader is referred to [2, 30, 60, 86] and the references therein.
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14.2 Hybrid MPC

In this section, MPC for hybrid systems will be discussed. Furthermore, some com-
monly used models for hybrid systems that are useful in the MPC context will be
reviewed.

14.2.1 Model Predictive Control

The most commonly used variant of MPC is linear MPC, where the dynamics are
linear and often a quadratic performance measure similar to the one used in linear
quadratic (LQ) control is used. A difference compared to LQ control is that linear
MPC is able to consider linear inequality constraints on states and control signals.
A discrete-time linear time-invariant model on state space form is given by

x(t +1) = Ax(t)+ Bu(t)

y(t) = Cx(t)
(14.1)

where t ∈ Z is the discrete time, x(t) ∈ Rn is the state, u(t) ∈ Rm is the control
input and y(t) ∈ Rp is the controlled output. An example of an objective function,
or performance measure, is a quadratic function in the form

J(t0) =
1
2

N−1

∑
s=0

(
‖y(t0 + s)− r(t0 + s)‖2

Qe
+ ‖u(t0 + s)‖2

Qu

)

+
1
2
‖y(t0 +N)− r(t0 +N)‖2

Qe

(14.2)

where Qe ∈ Sp
+ and Qu ∈ Sm

++ and r(t) ∈ Rp is the reference signal. Other common
performance measures for linear MPC are formed by replacing the squared 2-norm
in (14.2) with a 1-norm or∞-norm. Often, the constraints are defined as polyhedral
constraints in the form

Hu(t)u(t)+ Hx(t)x(t)+ h(t)≤ 0 (14.3)

In MPC, the future behavior of the system is predicted N time steps ahead. In this
context, prediction means that a system model like (14.1) is used to calculate how
the system will react to control inputs and thereby what will happen in the future if
a certain control input is applied to the system. Not surprisingly, N is called the pre-
diction horizon, which in practice is chosen long enough to cover a normal transient
of the controlled system.

There are several different ways to cast (14.1), (14.2) and (14.3) in the form of a
formal optimization problem. The two most common variants are presented in the
Appendix. For a more in-depth treatment, see [59]. If the system is linear and the
objective function is quadratic, the resulting optimization problem is, for a fixed
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Algorithm 14.1 Basic MPC controller
1: Measure or estimate the state of the controlled process x̄ at time instant t0.
2: Obtain {u(t0),u(t0 +1), . . . ,u(t0 +N−1)} by minimizing (14.2) subject to the con-

straints (14.1), (14.3) and the initial condition x(t0) = x̄.
3: Apply the first element u(t0) to the controlled process.
4: t0← t0 +1
5: Repeat the procedure.

value of the initial state x̄, a quadratic programming (QP) problem in the general
form

minimize
x

1
2

xT Hx + f T x (14.4a)

subject to AEx = bE , (14.4b)

AIx ≤ bI, (14.4c)

where x contains the control inputs, states and controlled outputs for the entire pre-
diction horizon stacked. This problem is defined in more detail in Sec. 14.3.1. QP
problems in general are well-studied problems for which there exist well-developed
optimization routines. Similarly, if the system is linear and a 1-norm or an∞-norm
performance measure is used, the resulting optimization problem becomes a linear
programming (LP) problem. Hence, for linear MPC the optimization problem is
considered relatively easy to solve. An extension is to not only consider the opti-
mization problem for a single initial state, but for all initial states of interest. The
problem then becomes a parametric QP, which is further described in Sec. 14.3.3.

In order to get closed-loop control, the approach above is used in a receding
horizon fashion, which means that the prediction interval is moved one step forward
after each completed optimization. After the optimization has been performed, only
the first control signal in the optimal control signal sequence computed is actually
applied to the system. In the next time step, a new optimization is performed and
the procedure is repeated. Due to modeling errors and unknown disturbances, the
predicted behavior and the actual behavior of the system do not usually completely
coincide. Such errors are handled by the feedback in the algorithm. The procedure is
visualized in Fig. 14.1 and the conceptual steps are summarized in Algorithm 14.1.
An extension to linear MPC is nonlinear MPC. This extension handles nonlinear

systems and a general nonlinear performance measure in the objective function.
Unfortunately, the resulting optimization problem is often more difficult to solve as
compared to the linear case. A special case of nonlinear MPC is control of systems
described partly by logic. These are called hybrid systems and provide a frame-
work for describing processes evolving according to continuous dynamics, discrete
dynamics and logic rules [21]. This class of systems is especially important when
we analyze and control systems arising in the growing interaction between physical
processes and digital controllers. A survey covering both linear and nonlinear MPC
is found in [64]. A reference book covering most of MPC is [62].
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Fig. 14.1 Illustration of receding horizon policy at t = t0 for an MPC controller with control input
u(t), controlled output y(t) and prediction horizon N. The dotted line is the predicted output and
the dashed line is the actual output.

14.2.2 Modeling Frameworks for Hybrid Systems

In this subsection, some different modeling frameworks for discrete-time hybrid
systems are considered. The most important ones for the purpose of this work are
reviewed in more detail and are related to each other.

14.2.2.1 Mixed Logical Dynamical Systems

Mixed logical dynamical (MLD) systems is one way of describing an important
class of hybrid systems defined by linear dynamic equations subject to linear mixed
integer inequalities, that is, inequalities involving both continuous and binary vari-
ables. The MLD description is a very general model class capable of describing a
broad range of systems.

In [21] an MPC framework used for systems described by physical laws, logic
rules and operating constraints is presented. An important part of this framework
consists of the definition of MLD systems. This class of systems includes lin-
ear hybrid systems, finite state machines, some classes of discrete event systems,
constrained linear systems and nonlinear systems that can be exactly or approx-
imately described by piecewise affine functions. There are many applications for
MLD systems reported in the literature. Some illustrative examples can be found
in [10, 21, 42]. An MLD system can be described by the following linear relations
[21]:
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x(t +1) = A(t)x(t)+ B1(t)u(t)+ B2(t)δ (t)+ B3(t)z(t)

y(t) = C(t)x(t)+ D1(t)u(t)+ D2(t)δ (t)+ D3(t)z(t)

E2(t)δ (t)+ E3(t)z(t)≤ E1(t)u(t)+ E4(t)x(t)+ E5(t)

(14.5)

where t ∈ Z. Furthermore, y(t) ∈ Rpc × {0,1}pl denotes the controlled outputs,
x(t) ∈ Rnc ×{0,1}nl denotes the states of the system, u(t) ∈ Rmc ×{0,1}ml de-
notes the control inputs, δ (t) ∈ {0,1}rl denotes the auxiliary binary variables, and
z(t) ∈ {0,1}rc denotes the auxiliary continuous variables. If the desired finite alpha-
bet is not binary as here, it can be coded using binary variables.

In [21], both optimal control and receding horizon estimation for MLD systems
is discussed. The control signal at a state x̄ is found by minimizing either a linear
or a quadratic performance measure similar to the one in (14.2) subject to x(t0) = x̄
and the dynamics in (14.5). This MPC problem can be rewritten as an optimization
problem in mixed integer quadratic programming (MIQP) form [21], i.e., in the
general form

minimize
x

1
2

xT Hx + f T x (14.6a)

subject to Eqs. (14.4b), (14.4c), (14.6b)

xi ∈ {0,1},∀i ∈ B, (14.6c)

where x contains the variables from the system in (14.5) for the entire prediction
horizon stacked and B denotes the set of indices to binary components of x. More
details on how to formulate the MPC problem as an optimization problem can be
found in the Appendix. The problem data for the MIQP problem in (14.6) are de-
fined in Sec. 14.3.2. An extension is to not only consider the optimization problem
for a single initial state, but for all initial states of interest. The problem then be-
comes a parametric MIQP, which is further described in Sec. 14.3.3.

As with linear MPC, hybrid MPC is implemented in a receding horizon fashion.
The difference is that in hybrid MPC it is much more complicated to find the optimal
control signal sequence, since the system is neither linear nor smooth, [21]. One way
of reducing the computational complexity is to use tailored MIQP solvers. This is
further discussed in [4].

14.2.2.2 Piecewise Affine Systems

Piecewise affine (PWA) systems [76] are hybrid systems where the control and state-
space is partitioned into different polyhedral regions each implying certain affine
dynamics. Mathematically, this can be formulated as [12]:

x(t +1) = Aix(t)+ Biu(t)+ f i

if

[
x(t)
u(t)

]
∈ C i, i = {1, . . . ,s} ,

(14.7)
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where x ∈ Rnc × {0,1}nl denotes the continuous and binary states, u ∈ Rmc ×
{0,1}ml denotes the continuous and binary control inputs and

{
C i
}s

i=1 denotes the
polyhedral partition of the set of the state and input space. Often, there are also
hard constraints on the inputs and states. These are brought into the framework by
adding polyhedral constraints in the form in (14.3). The feasible set for the con-
strained PWA system is then given by the intersection of the set over which the
system is defined in (14.7) and the feasible set of the constraints in (14.3).

The optimal control problem for PWA systems is formulated analogously to the
one for MLD problems. An objective function in the form in (14.2) is minimized
subject to the constraints in (14.3) and in (14.7). However, in order to bring the
optimal control problem into the form of an optimization problem, it is often first
reformulated as an MLD system and later solved as an MIQP problem.

14.2.2.3 Discrete Hybrid Automata

Discrete hybrid automata (DHA) are composed by the interconnection of a finite
state machine (FSM), a switched affine system (SAS), a mode selector (MS), and
an event generator (EG), [79]. The FSM models the discrete dynamics in the DHA.
The state update equation for this subsystem is

xl(k +1) = fl(xl(k),ul(k),e(k)) (14.8)

where xl ∈ {0,1}nl is the logic state, ul ∈ {0,1}ml is the logic input, e ∈ {0,1}ne is
a logic event signal from the EG, and fl(·) is a Boolean function. The SAS can be
represented as

xc(k +1) = Ai(k)xc(k)+ Bi(k)uc(k)+ fi(k) (14.9)

where xc ∈ Rnc is the real-valued state, uc ∈ Rmc is the real-valued input and i(k) ∈
{0,1}s is an input that is used to select the mode in which the SAS is working. The
MS computes the mode of the SAS i(k) based on the state in the finite state machine
xl(k), the input ul(k) and the event signal e(k) according to

i(k) = fMS(xl(k),ul(k),e(k)) (14.10)

where fMS is a Boolean function. The result from the EG is the binary-valued signal
e(k), which represents whether specified linear inequalities are satisfied or not. More
specifically,

[e j(k) = 1]←→
[
aT

j xc(k)+ bT
j uc(k)≤ c j

]
(14.11)

Optimal control for systems represented as DHA can be performed in at least two
ways. First, the DHA model can be transformed into an MLD model and solved as
an MPC problem for such systems. Second, the ideas in [18] can be used, where the
structure of the DHA is exploited in a more direct way by combining mixed integer
optimization with satisfiability solvers and constraint logic programming solvers.
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14.2.2.4 Equivalences

As seen in previous sections, there are several different ways of modeling discrete-
time hybrid systems. Fortunately, it is possible to show equivalences between these
under more or less restrictive assumptions. As a result, derived theoretical properties
and computational tools can be transferred from one class to another. For optimal
control and state estimation, the MLD description is proposed, while most other
hybrid techniques are built on a PWA representation [15]. For an in-depth review of
equivalences, see e.g., [15, 17, 21, 33, 52, 53, 79].

14.3 Optimization methods

In this section we will review optimization methods that can be used to solve the
optimization problems that were formulated in the previous section. Both on-line
methods as branch and bound (BnB) as well as off-line methods as multiparametric
programming will be discussed.

14.3.1 Quadratic Programming

In this work, convex QP problems in the form in (14.4) are considered, where
x ∈ Rn, H ∈ Sn

+, f ∈ Rn and the rows in AE ∈ Rp×n are given by the vec-
tors in {ai ∈ Rn | i ∈ E} and the rows in AI ∈ Rm×n are given by the vectors in
{ai ∈ Rn | i ∈ I}. The column vectors bE and bI are analogously defined. The sets I
and E are finite sets of indices where I∩E = ∅. The problem in (14.4) can be solved
using, for example, an active set (AS) method or an interior point (IP) method. If
the matrix H is zero, the problem is an LP problem. These are usually solved either
with a simplex method or an IP method. However, the main focus in this work will
be on QP problems. More information about QP and how to solve these problems
can be found in, e.g., [68].

14.3.2 Mixed Integer Programming

MIQP is a special case of mixed integer nonlinear programming (MINLP). At first
glance, the MIQP problem looks similar to the ordinary QP problem. There is, how-
ever, one important difference. Some optimization variables are not allowed to be
real-valued, but they are constrained to be integer-valued. This seemingly minor
modification turns the easily solved QP problem, into an NP-hard problem, [85]. A
common special case of MIQP occurs when the integer variables are constrained to
be 0 or 1. To use a precise notation, this problem is called a mixed binary quadratic
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programming (MBQP) problem. The standard notation for MBQP seems, at least
in the control literature, to be MIQP. In what follows, the problem studied will be
an MBQP, but to keep the standard notation, it will be denoted MIQP. A survey
considering quadratic integer programming (QIP) can be found in [83].

14.3.2.1 Problem Definition

The mathematical formulation of an MIQP problem can be found in (14.6), where
f ∈Rnc+nb and H ∈ Snc+nb

+ . Furthermore, let AE , AI , bE and bI be defined as in Sec.
14.3.1 with n = nc +nb. The difference is that nb optimization variables indexed by
the set B are not real-valued but binary-valued. As a consequence, the problem is no
longer convex. Mixed integer linear programming (MILP) can be seen as a special
case of MIQP where H is the zero matrix.

Often, this problem is solved using a branch and bound method, where many QP
problems in the form in (14.4) are solved in order to find the optimal solution to the
problem in (14.6). The procedure is similar for the MILP case, but the relaxations
are of LP type instead of QP type. There also exist other methods for solving these
problems. The four most commonly used methods are cutting plane methods, de-
composition methods, logic-based methods and branch and bound methods, [21].
Several authors report that branch and bound is the best method for mixed integer
programs, [21]. In [44], a branch and bound method is compared to generalized Ben-
ders decomposition (GBD), outer approximation (OA) and LP/QP-based branch and
bound. The conclusion in this reference is that branch and bound is the best method
for solving MIQP problems. With a few exceptions, branch and bound is an order
of magnitude faster than any of the other methods. An important explanation to this
is that the QP subproblems are very cheap to solve. This is not the case for general
MINLP, where the subproblems to be solved in the nodes are more complicated.
In the MINLP case there exist important problem classes where branch and bound
is not the best method. A review of different methods of solving MIQP problems
can be found in [83]. There exist several software for solving MIQP problems. For
MATLAB, free software like YALMIP [61] or miqp.m [19] can be used. A commonly
used commercial software is CPLEX.

14.3.2.2 Branch and Bound Methods

If computational burden is not considered, the most straightforward approach to
compute the optimal solution to an optimization problem involving binary variables
is to enumerate all possible combinations of the binary variables, and for each such
combination kept fixed, compute the optimal solution of any real-valued variables
also included in the problem. Thereafter, the objective function values are compared
and the solution, or solutions, generating the best objective function value is taken
as the optimal solution. However, for problems involving many binary variables
the computational burden will become overwhelming, since the number of com-
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binations of the binary variables is 2nb . Hence, there is a need for a method that
can find the optimal solution without enumerating all possible combinations of the
binary variables. One such method is branch and bound, where for a majority of
problems it is sufficient to explicitly enumerate only some of the possible combina-
tions. Unfortunately, the worst case complexity is still exponential, and the number
of combinations necessary to enumerate and solve an optimization problem for, is
problem dependent. This classical pessimistic complexity bound is improved in [9].

The basics of a branch and bound method will now be discussed. The main part
of the presentation follows those in [85] and [45]. The reader is referred to these
two references for more detail. The general idea of branch and bound is to split the
feasible set S of the optimization problem into K smaller sets such that

S =
K⋃

i=1

Si (14.12)

This partitioning is performed in several steps and it can be represented using a
binary tree structure. The topmost node in the tree is called the root node and the
nodes at the bottom of the tree are called leaves. The rows of nodes in the tree
starting with the root node and ending with the leaves are called levels. An important
property of branch and bound is that the entire tree is not known from the beginning
and only the parts of the tree explicitly needed in the solution process are further
expanded.

An optimal solution over the set S can be computed by optimizing over the
smaller sets separately according to

zi∗ = minimize
x∈Si

f0(x), i ∈ {1, . . . ,K}

z∗ = min
i∈{1,...,K}

{
zi∗} (14.13)

An optimal solution over S is found as the optimal solution to a subproblem with
the lowest optimal objective function value. Note that the leaves of the tree contain
the different combinations of the binary variables that have to be investigated if S
is to be explored by explicit enumeration. Hence, if it is necessary to solve all of
the problems represented by the leaves, there is no gain from using the branch and
bound method.

The key idea in order to reduce the computational effort is to compute upper and
lower bounds on the optimal objective function value for the subproblems in the
nodes. Often, these bounds can be used to prune entire subtrees, which means that
these subtrees do not have to be explicitly considered, since it can be concluded that
the optimal solution cannot be found in any of them. Furthermore, these bounds
are supposed to be easily computable. Pruning can be interpreted as an implicit
enumeration, and is therefore highly desirable. The tree can be pruned if a relaxation
in a node

1. is infeasible; the entire subtree below that node is infeasible.
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2. is integer feasible; the optimal value for the entire subtree below that node has
been found.

3. has an objective function value that is worse than the best known integer solu-
tion so far (“dominance”). The objective function value gets worse as the pro-
cess proceeds further down in the tree. Hence, there is no use in continuation.

To be able to apply the above scheme in practice, one has to decide how to compute
the upper and lower bounds. Usually, upper bounds are found from integer feasible
solutions and lower bounds are found from relaxations or duality. In MIQP, often QP
relaxations are used, where the integer constraints are relaxed to interval constraints.
These relaxations are in the form

minimize
x

1
2

xT Hx + f T x (14.14a)

subject to (14.4b), (14.4c) (14.14b)

0≤ xi ≤ 1, ∀i ∈ B (14.14c)

xi = 0, ∀i ∈ B0, xi = 1, ∀i ∈ B1 (14.14d)

where the original integer constraints have been relaxed to interval constraints. Sev-
eral relaxations with different choices of the sets B0 and B1 (where B0 ∩B1 = ∅)
are ordered and solved in a structured way in the binary search tree. More about
relaxations applicable to branch and bound for MIQP in the hybrid MPC applica-
tion can be found in [11], where also more advanced relaxations of SDP type are
considered. Efficient computational methods for computation of these relaxations in
the hybrid MPC application are presented in [7] and in [8] for QP relaxations and
SDP relaxations, respectively.

In a branch and bound method, there are several parameters and choices that may
affect the performance drastically. One important choice to make is to decide which
node to solve next. The three most common choices are depth first, breadth first, and
best first. In depth first, the next node to solve is chosen as one of the child nodes of
the current node. This process is continued until a node is pruned. In breadth first,
all nodes at each level are considered before a node in a new level is considered. In
best first, the next problem considered is the one with the lowest lower bound so far.

According to [44], solving the subproblems of QP type using a dual AS method
offers the most straightforward way to exploit the structure introduced by the
branching procedure. After a branch, the solution to the parent problem is in gen-
eral infeasible in the child problems. But, a dual feasible starting point for the child
problems is directly available from the dual solution of the parent problem. Con-
sequently, it is possible to warm start the AS solver using information from the
solution to the parent problem. Also, since a dual AS method is an ascent method
generating dual feasible points, it can use an upper bound as a cut-off value for
terminating the QP solver prematurely [44]. According to [85], AS methods (the
reference considers the LP case) are preferable for solving the relaxed problems in
branch and bound. For very large problems, IP methods can be used to solve the
first subproblem, but in the subsequent subproblems an AS method should be used.
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An important step in a commercial branch and bound code is the preprocessing
step. The basic operation in preprocessing is to quickly detect and eliminate re-
dundant constraints and variables and to tighten bounds, if it is possible. A smaller
and tighter formulation is preferred, since it is necessary to consider the number of
nodes, and the dimension of the subproblems might be reduced.

A formal description of a branch and bound algorithm applied to a binary opti-
mization problem P can be found in Algorithm 14.2, where z̄ denotes the current
upper bound, x̄ denotes the solution associated with the current upper bound, zi de-
notes the optimal objective function value of the relaxation PR

i to the problem Pi in
node i, and xi denotes the optimal solution to PR

i . The feasible set of Pi and PR
i is

denoted Si and SR
i , respectively. How subproblems are put on the list and retrieved

Algorithm 14.2 Branch and bound for binary variables, [45, 85]
z̄←+∞
x̄← void
Add P to LIST .
while length(LIST) > 0 do

Pop Pi from LIST .
Solve relaxation PR

i ⇒ zi and xi.
if SR

i = ∅ then
No feasible solution exists for Pi.

else if zi ≥ z̄ then
There exists no feasible solution of Pi which is better than x̄.

else if xi ∈ Si then
xi is integer feasible and is therefore optimal also in Pi.
z̄← zi

x̄← xi

else
Split Si into Si0 and Si1.
Push Pi0 and Pi1 to LIST .

end if
end while

from the list is decided by the choice of the node selection criterion and the branch-
ing priority. If it is possible to easily find an upper bound on the optimal objective
function value, this bound can be used to initialize the global upper bound z̄.

14.3.2.3 Logic-Based Programs

It is possible to modify the branch and bound algorithm for mixed integer programs
to logic-based programs as described in [18, 26, 51, 69, 74, 80]. The integer vari-
ables which are fixed in a node are used to “infer” new knowledge on other integer
variables. In this way the best integer solution can potentially be updated faster and
hence reduce the computational time. In [18], the reduction was an order of magni-
tude for a supply chain management example.
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14.3.3 Multi-Parametric Programming

In this subsection, optimization problems that depend on a parameter γ0 ∈Ω ⊂Rnγ

will be discussed. Throughout the text, the set Ω is assumed to be polyhedral. In
general, these problems can be solved using an ordinary optimization algorithm for
a single value of the parameter γ0, or they can be solved for all parameter values
γ0 ∈Ω . The latter alternative is called parametric programming. Often a distinction
is made between if γ0 is a scalar or not. If it is not a scalar, it is often called multi-
parametric programming which is the case in MPC applications. Many contributions
have been published in the area of mp-QP and mp-MIQP. Therefore, the details are
not given in this work. For a thorough treatment, see, e.g., [16, 20, 36, 37].

Both multiparametric QP (mp-QP) problems and multiparametric MIQP (mp-
MIQP) problems will be considered in this work, mp-QP problems being problems
of the form

minimize
x

1
2

xT Hx + f T x

subject to AEx = SEγ0 +bE
Eq. (14.4c)

(14.15)

There are other equivalent forms, but the basic idea is the same where the linear term
in the objective function or the right hand side in the constraints can be changed by
a parameter. The mp-MIQP problems considered are in the form

minimize
x

1
2

xT Hx + f T x

subject to AEx = SEγ0 +bE
Eqs. (14.4c), (14.6c)

(14.16)

where γ0 ∈ Ω is the parameter and B denotes the set of indices to binary-valued
components in x.

14.3.4 Other Methods

Other methods that can be used to solve the optimization problems arising in hybrid
MPC are methods such as genetic algorithms, simulated annealing and tabu search.
Since these methods in general only provide suboptimal solutions, they will not be
discussed in more detail. However, it should be stressed that they can be parallelized
fairly easily [70].
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14.4 Parallel implementation

In this section, possibilities for parallelization at different computational levels are
discussed. On the top level, the integer optimization problem is considered directly.
The main focus is on branch and bound methods, but logic-based methods and para-
metric programming methods are alsoconsidered. In order to solve the MIQP prob-
lem of interest using a branch and bound method, QP problems should be solved
by a convex QP method at an intermediate computational level. At an even lower
level, the numerical linear algebra can be found. The reason for the partitioning into
levels is that the possibilities and the applicable parallelization methods vary with
the level and it is a nontrivial trade-off at what level, or levels, the algorithms should
be parallelized. Work should be scheduled such that overhead from, e.g., commu-
nication, idle time due to load imbalance, and waiting time for shared resources is
minimized [49]. An important feature of parallelism is the way the memory is dis-
tributed. Shared address space parallel computers have global memory, which all
processors can address directly. This is in contrast to message passing computers,
where each processor has its own local memory. For this latter case the processors
can communicate only by sending messages over a network. Another important
consideration is that the processors should be ’sufficiently loaded’ in order to utilize
the parallel hardware efficiently according to Amdahl’s law. This law states that the
speedup from parallelization does not grow linearly with the number of processors
for a fixed problem size [49]. This is due to the sequential, nonparallelizable, part
of the algorithm that eventually saturates the speedup as the number of processors
grows.

14.4.1 Parallel Implementations at High Level

In this section ideas from generic parallel solvers for integer programs and logic-
based programs are reviewed. These implementations have immediate potential for
hybrid MPC. Also, ideas on how to parallelize multiparametric programming are
presented.

14.4.1.1 Branch and bound

It is clear from Sec. 14.3.2.2 that the tree used in branch and bound algorithms
can easily be partitioned into smaller parts that can be searched by different proces-
sors. Parallel formulations of branch and bound have shown near linear speedup in
many cases, [3]. However, because of pruning many of the processors will become
idle long before the optimal solution is found. This will result in low efficiency,
and therefore it is not dessirable that one perform assignment in a static way. Hence,
there is a need for a dynamic load balancing that minimizes communication and pro-
cessor idling. In this work, parallelization on different computational levels will be
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High level: Integer optimization

Intermediate level: Convex optimization

Low level: Linear algebra

BnB

AS

Fig. 14.2 Parallelization for branch and bound can be performed at different computational levels.

discussed. This is illustrated in Figure 14.2. We will only discuss the case of depth-
first branch and bound, where the list in Algorithm 14.2 implements a stack. This
case is commonly used in hybrid MPC and the case that is most easily parallelized.
The other cases are discussed in more detail in [49].

For depth-first branch and bound the load balancing is composed of two phases:
task portioning and subtask distribution [49]. In the task portioning typically two
different techniques can be employed: so-called stack splitting and node splitting.
In stack splitting the stack of a processor is split in two, half of which is kept and
half of which is given away to another processor. In node splitting only one node
is given away. Node splitting typically results in more work. Subtask distribution
involves questions such as when work is split and how it is distributed. In both
cases, this effort can be either sender initiated or receiver initiated.

It should be stressed that the best integer solution has to be known to all pro-
cessors. For shared address space computers this is no problem, but for a message
passing computer each processor has to have a local copy of the best integer solution
and in case it is updated broadcast it to all other processors.

14.4.1.2 Logic-Based Programming

As explained in the previous section, logic-based programming can be used in a
branch and bound algorithm to improve performance. It is not just the branch and
bound algorithm that can be parallelized. As explained in [63, 66], logic-based pro-
gramming can be parallelized also. For certain problems these algorithms can obtain
orders of magnitude in speedup over distributed branch and bound search [66].
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14.4.1.3 Multiparametric Programming

The explicit hybrid MPC problem can be solved as an mp-MIQP problem in, basi-
cally, three conceptually different ways. First, explicit enumeration, where all pos-
sible feasible combinations of integer solutions are explicitly enumerated, and one
mp-QP problem is solved for each one of these sequences. The second method is
a parametric branch and bound approach, where not necessarily all sequences have
to be explicitly enumerated, i.e., it is basically the same idea as branch and bound
for nonparametric problems, [37, 5]. The third method is a dynamic programming
approach [27]. In the first method, parallelization is obvious, since different mp-
QP problems can be assigned to different processors. The same applies in principle
to the second method; however,problems regarding load balancing similar to those
that can potentially occur for the nonparametric case, have to be considered in order
for us to to get an efficient algorithm. A difference from the nonparametric case is
that the subproblems are mp-QP problems instead of QP problems, which means
that the computational effort for each subproblem is significantly higher. This could
affect the load balancing strategy, notably because the relative cost for load balanc-
ing decreases compared to the nonparametric case, which indicates that more time
can be spent on performing a good planning of future computations. The dynamic
programming approach also allows us to compute the mp-QP solution for different
sequences on different processors. Which approach is the most beneficial seems to
depend on the difficulty of the problem. For example, explicit enumeration might be
practically impossible, and therefore of no interest at all, for larger problems.

In all three cases, the state-space can also be divided into several smaller parts
from the beginning. Given this initial partitioning, which can be, for example, boxes
or a general polyhedral one, the solution in different regions of the state-space can
be computed by different processors. In this approach, the solution parts have to
be merged into one in a final step. This seems also fairly straightforward since the
active set and integer sequences can be matched in the different solution parts.

14.4.2 Parallel Implementations at Intermediate Level

In this section, we discuss how the subproblems—the relaxations—in branch and
bound can be solved more efficiently using parallelization. The relaxed problems are
either of QP type or of SDP type. However, the main focus will be on QP problems.

14.4.2.1 Relaxed Problems in Branch and Bound

As noticed in [4], the QP relaxations used in branch and bound for a hybrid system
in MLD form are ordinary linear MPC problems (possibly with an affine system de-
scription). In principle, this means that parallelization at this level can be performed
as for linear MPC. However, this is not necessarily the most beneficial way, since it
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might be better to spend the computational power at another computational level in
the algorithm. Since the relaxations are linear MPC problems, also work on distri-
bution of such problems are also of interest. Some references considering this topic
are [29, 35, 38, 39, 41, 47, 48, 54, 56, 82, 87]. A good overview of distributed MPC
can be found in the recent review in [75].

An important key to parallelization of an optimization algorithm is the ability
it gives one to, in some way, decompose the problem. This topic is by no means
new and dates back to the beginning of the 1960s. Some fundamental and relevant
references on this topic are [22, 23, 24, 28, 32, 40, 57, 58] and the references therein.

14.4.2.2 Tailored Solvers for the QP Subproblems

A tailored solver is a solver that in some way exploits properties of the problem
to be solved in order to improve the performance. In [4, 6, 7] it was concluded
that in order to get good performance for the hybrid MPC problem, tailored, dual
active-set-like QP solvers should be used to solve the QP problems at the nodes of
branch and bound. AS solvers are preferred over IP solvers, since the former can
be efficiently warm-started. Similarly, dual QP solvers can more easily make use of
a good initial guess of a (dual) solution to the problem since the geometry of the
feasible set in the dual is very simple. The capacity to efficient warm-start is very
important in branch and bound since it is often necessary one solve many QP prob-
lems to solve one MIQP problem. In order to overcome the well-known limitation
of classical AS methods—that one potentially costly iteration is necessary for each
addition or removal of a constraint to the working set—a projection method was
developed in [7]. In this method, steepest-descent directions and Newton directions
are projected onto the dual feasible set and the result is a solver which is able to
make large changes to the working set, using only a small number of iterations.
This is especially important if large disturbances, or large changes in the reference
signal, can occur. The tailoring for MPC is in this algorithm performed at the lin-
ear algebra level. The steepest-descent directions and Newton directions are very
efficiently computed with O(N) computational complexity. Furthermore, the line
searches are also exploiting the problem structure. This is further explained in Sec.
14.4.3. Some other variants of QP solvers tailored for MPC, or at least designed
with this application in mind, can be found in [14, 43, 55, 72, 73, 84].

The algorithms previously developed in [4, 6, 7] are designed mainly for non-
parallel architectures. On parallel architectures there might exist other types of al-
gorithms that potentially can be useful. However, we still believe that some form of
dual active-set-like QP solver built on projection of first and second order directions
is promising. For these solvers, the number of iterations is kept low but the cost for
each iteration is higher. This is a result of the fact that large changes of the working
set are common, and hence, updates of factorizations are no longer beneficial as they
are in a classical AS solver. Instead, the factorization is in each iteration computed
from scratch as in an IP method. A smaller number of computationally heavier iter-
ations seems appealing from a parallel point of view, since it seems more promising
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to parallelize the computations within one iteration, rather than working on several
iterations simultaneously.

14.4.2.3 Multiparametric Programming

At the intermediate level, the mp-QP (or mp-LP) solver can be parallelized. In mp-
MIQP solvers, often an mp-QP solver is used as a subroutine. One way of paral-
lelizing an mp-QP solver similar to the one presented in [78] is to explore different
candidate regions by different processors. Another way is to split the parameter
space beforehand, and thus let different processors explore different parts of the
state-space. If the latter approach is used, the solution parts have to be merged in
a final step. However, it is also true in this case that artificially cut regions can be
identified since the active sets coincide. If the first solution is used, this merging is
not necessary.

14.4.3 Parallel Implementations at Low Level

At the lowest level of the optimization algorithm, parallelization of the linear alge-
bra is the main focus. It is clear that the linear algebra operations in the solver can
in principle be performed more or less concurrently [25]. At this level it is interest-
ing to investigate how these operations can be performed best for the hybrid MPC
application, both in cases where there exists some kind of interconnection structure
in the system and when such a structure does not exist.

Today, how to tailor most optimization algorithms for the MPC application is
well-known. Tailoring usually means in this case to exploit the almost block diago-
nal structure of the KKT system in order to solve this system of equations efficiently.
Examples of algorithms for different types of optimization problems related to MPC
that exploit this structure can be found in [4, 6, 7, 8, 14, 34, 50, 55, 72, 81, 1]. The
key to solving these equations efficiently is to factor the coefficient matrix for the
KKT system efficiently. In this case the factoring can be performed either using a
Riccati recursion or some other generic algorithm that is able to exploit the sparsity
in the problem. Using either of these two approaches, the system of equations can
be solved with a computational complexity that grows asO(N), which can be com-
pared to applicable generic dense factorizations whose complexity grows asO(N3).

A fundamental property of the Riccati recursion is that it factors the coefficient
matrix by performing operations on matrices of the size in the order of the state
and control signal dimension and it works using recursions backwards and forwards
along the prediction horizon. If the number of processors is moderate compared to
the state and control signal dimension, it seems reasonable to parallelize the opera-
tions that are performed within a single step of the Riccati recursion using standard
techniques like those in [25]. However, it is not obvious how to extend the Riccati
method to the case where a large number of processors are available, since there is a

330 D. Axehill and A. Hansson

     irmgn.ir



limit on how much computational power is necessary for each step in the recursion,
and the next iteration relies on the result of the previous one. One possible way to
limit this bottleneck could be to concatenate the dynamics from several time steps
and consider a reformulated problem with higher dimensions of state and control
signals, but with a shorter prediction horizon. For the case with a large number of
processors, it might be interesting to search for a completely new way to attack the
problem designed to fully exploit parallelism, or to investigate how far it is possible
to reach with existing generic parallel methods.

In the solver presented in [7], line searches along piecewise affine paths are per-
formed in each iteration. These paths originate from the projection of the search
direction onto the feasible set and the result is a piecewise quadratic path defined
over one dimension, the step length. Often, these paths are nonconvex and there-
fore the suboptimal strategy of backtracking is used to find a suitable step length.
It is also possible to find the first local optimizer along the path, or even to find the
global optimizer; however, this takes more time since all pieces along the piecewise
affine path might need to be investigated. Numerical experiments show that the step
length calculation takes a fairly large amount of the total time of each iteration and
it would be interesting to try to make this step faster using parallelism. For example,
one might try different backtracking step lengths simultaneously, or work on several
pieces on the piecewise affine path simultaneously in order to quickly get the first
local minimizer.

We also expect it will be possible to parallelize the linear algebra in multi-
parametric solvers, since these solvers perform operations similar to AS solvers.
Hence, similar strategies are expected to be useful.

14.5 Conclusion

In this chapter we discussed parallel implementations of hybrid MPC. Different
methods for achieving parallelism at different computational levels were surveyed.
At the highest level we have discussed how the branch and bound algorithm for
solving hybrid MPC problems can be parallelized. Also, brief ideas on ways to
parallelize multiparametric programs for hybrid MPC were presented. At an inter-
mediate level we discussed how the relaxed QP problems in branch and bound can
be parallelized, and finally at the lowest level we discussed how the linear algebra
can be parallelized. It is clear from what has been said that there are many ways
of obtaining parallelism for hybrid MPC, and it is by no means clear that one must
utilize all possibilities. All possible subsets of parallelism have to be investigated
before a conclusive answer can be given.
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14.5.1 Future Research

There are many interesting directions for future research in this area. As previously
pointed out, the hard question to answer is which of these directions are the most
interesting ones to develop further. That question will be left partly unanswered in
this work. However, the topics we think are extra promising can be summarized as
follows:

• Investigation of parallelization of a branch-and-bound MIQP algorithm like the
one in [7]. Branch and bound algorithms have previously been parallelized,
which indicates that there already exists a foundation that, hopefully, can be
brought one or several steps further. The QP algorithm in [7] has proven to be
a very efficient alternative for sequential implementations, and there are several
properties that indicate it could benefit from parallelization in a good way.

• Use of logic-based programming, which has previously been used successfully
for hybrid MPC. There already exists work where generic variants of these meth-
ods have been parallelized. Such work could be a good starting point.

• Use of parametric solvers, which are very promising for parallelization. As out-
lined in this text, some parts of that work is rather straightforward, other parts are
less so. It is clear that everything that can be made to speed up these solvers are
of great practical value, since it is highly computationally demanding to solve
many of these problems.

Appendix

In this appendix, the MPC problem to minimize the objective function in (14.2)
subject to the dynamics in (14.1) and the constraints in (14.3) is cast in the form
of a QP problem. This can be done in several ways [59]. For simplicity, the deriva-
tion is performed for a linear MPC problem with a zero reference signal. It can be
performed analogously for the hybrid case by introducing binary constraints on the
desired variables. It is also straightforward to include a reference signal [4, pp. 65–
67]. Without any loss of generality, the optimization problems are formulated for
time step t = 0, which means that x̄ is the measured or estimated state of the system
at time step t = 0.

In this work, two different formulations are used. The main difference between
the two is the formulation of the dynamic equations. Before the optimization prob-
lems are formulated, some notation is defined:
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x =
[
xT (0) xT (1) · · ·xT (N)

]T
, u =

[
uT (0) uT (1) · · ·uT (N−1)

]T
,

e =
[
eT (0) eT (1) · · · eT (N)

]T
,

Qe = diag(Qe, . . . ,Qe) , Qu = diag(Qu, . . . ,Qu) ,

Hx = diag(Hx(0), . . . ,Hx(N)) , Hu =

[
diag(Hu(0), . . . ,Hu(N−1))

0

]
,

h =
[
hT (0) · · ·hT (N)

]T
, C = diag(C, . . . ,C) ,

A =




−I 0 · · · 0 0

A −I · · · 0 0

0 A · · · 0 0
...

...
. . .

. . .
...

0 0 · · · A −I




, B =

[
0

diag(B, . . . ,B)

]
, b =




−x̄
0
...

0




.

(14.17)

Complete Set of Variables

The most straightforward way to cast the MPC problem in the form of a QP problem
is to keep the dynamic equations as equality constraints. The MPC problem is then
formulated as a QP problem in the form

minimize
x,u,e

1
2

[
xT uT eT

]



0 0 0

0 Qu 0

0 0 Qe







x
u

e




subject to
[
A B 0

][
xT uT eT

]T
= b

[
C 0 −I

][
xT uT eT

]T
= 0

[
Hx Hu 0

][
xT uT eT

]T
+h≤ 0

(14.18)

The optimization problem in (14.18) is an optimization problem in the form in
(14.4). This formulation requires (N + 1) · (n + p)+ N ·m variables and gives a
sparse objective Hessian function and sparse constraint matrices. If this formula-
tion is used, a solver able to take advantage of sparsity should be used.
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Reduced Set of Variables

In the second formulation, e and x are eliminated from the problem. This can be
done by expressing e as e = Cx and x as a function of the initial state x̄ and the
control inputs u. From the state update equations it follows that

x = Sxx̄ +Suu (14.19)

where

Sx =




I
A

A2

...

AN




, Su =




0 0 · · · 0

B 0 · · · 0

AB B · · · 0
...

...
. . .

...

AN−1B AN−2B · · · B




. (14.20)

The equality constraints are now eliminated and the objective function can be writ-
ten as

1
2

uT (ST
u QxSu +Qu

)
u +(Sxx̄)T QxSuu +κ (14.21)

where κ = 1
2 (Sxx̄)T Qx (Sxx̄) is a constant and Qx = CT QeC. In practice, the con-

stant κ is ignored since the resulting optimization problem is still equivalent. Us-
ing (14.19), the inequality constraints can be written as

Hxx +Huu + h = HxSuu +Huu +h + HxSxx̄ ≤ 0. (14.22)

The optimization problem to minimize (14.21) subject to (14.22) is an optimization
problem of the form in (14.4) without equality constraints. In this formulation, the
objective Hessian function and constraint matrix become dense, but only Nm op-
timization variables are required. This formulation is less relevant for hybrid MPC
problems with binary states or binary outputs, since the binary constrained variables
need to be explicitly available (not eliminated) in the formulation.
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Chapter 15
Hierarchical Model Predictive Control for
Plug-and-Play Resource Distribution

Jan Bendtsen, Klaus Trangbaek and Jakob Stoustrup

Abstract This chapter deals with hierarchical model predictive control (MPC) of
distributed systems. A three-level hierarchical approach is proposed, consisting of a
high level MPC controller, a second level of so-called aggregators, controlled by an
online MPC-like algorithm, and a lower level of autonomous units.

The approach is inspired by smart-grid electric power production and consump-
tion systems, where the flexibility of a large number of power producing and/or
power consuming units can be exploited in a smart grid solution. The objective is to
accommodate the load variation on the grid, arising on one hand from varying con-
sumption, on the other hand by natural variations in power production, e.g., from
wind turbines.

The proposed method can also be applied to supply chain management systems,
where the challenge is to balance demand and supply, using a number of storages
each with a maximal capacity. The algorithm will then try to balance the risk of
individual storages running empty or full with the risk of having overproduction or
unsatisfied demand.

The approach presented is based on quadratic optimization and possesses the
properties of low algorithmic complexity and of scalability. In particular, the pro-
posed design methodology facilitates plug-and-play addition of subsystems without
redesign of any controllers.
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The method is verified by a number of simulations featuring a three-level smart
grid power control system for a small isolated power grid.

15.1 Introduction

We discuss a hierarchical set-up, where an optimization-based high level controller
is given the task of following a specific externally generated trajectory of consump-
tion and/or production of a certain resource. The high level controller has a number
of units under its jurisdiction, which consume a certain amount of the resource. The
flow of resources allocated to each of these units can be controlled, but each unit
must at all times be given at least a certain amount of the resource; vice versa, each
unit can only consume a certain (larger) amount of the resource.

One can think of various practical examples of systems that fit with this set-up;
for instance, a supply chain management system [2], where the challenge is to bal-
ance demand and supply, using a number of storages each with a maximal capacity.
The algorithm will then try to balance the risk of individual storages running empty
or full with the risk of creating overproduction or unsatisfied demand. Other ex-
amples include large-scale refrigeration systems (e.g., in supermarkets), where the
resource is refrigerant and the consuming units are individual display cases [14];
irrigation systems, where the shared resource is water and the consuming units are
adjustable field sprinklers [13]; chemical processes requiring process steam from
a common source [5]; or even digital wireless communication systems, where the
resource is bandwidth and the consuming units are handheld terminals, e.g., they
are connected to a building-wide intranet [1]. See also [6] and [3] for an example
of a district heating system that shares some of the physical characteristics outlined
here, although the cited papers pursue a decentralized control scheme rather than a
centralized one.

Such large scale hierarchical systems are often subject to frequent modifications
in terms of subsystems that are added (or removed). This adds an important side
constraint to design methodologies for controlling such systems: They should ac-
commodate incremental growth of the hierarchical system in a way that is flexible
and scalable. In essence, the design methodology should support a plug-and-play
control architecture; see e.g., [12].

In many cases, a natural choice for the top level controller is some sort of model-
predictive controller (MPC) [11], [7], since systems of the kinds referred to above
are multivariable, subject to constraints and often involve considerable delays. Fur-
thermore, some sort of reference estimate is often known in advance, e.g., from
24-hour electric power consumption traces, weather forecasts, purchase orders, etc.
Unfortunately, the computational complexity of traditional MPC scales quite poorly
with the number of states in the problem (O(n3)); see, e.g., [4]). Refer also to [9]
for a recent contribution on MPC control for two-layer hierarchical control systems.
In the type of problems considered above, this complexity growth places significant
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limits on how large systems may be so that a centralized solution can handle them,
as also pointed out in, e.g., [10].
In this chapter, we propose a hierarchical control architecture that

• is based on a standard MPC solution at the top level;
• is able to accommodate new units without requiring modifications of the top level

controller;
• remains stable for an increasing number of units;
• facilitates plug-and-play addition of units at the bottom level, i.e., new units can

be incorporated at the bottom level simply by registering with the unit at the level
just above it.

Furthermore, the worst-case complexity is lower than for conventional centralized
solutions, which means that the proposed scheme scales more “reasonably” than the
centralized solution. As will be illustrated, the involved optimization techniques give
rise to quite sparse structures; this sparsity can be exploited to reduce complexity.

By a distributed resource control system we shall understand a system with the
following characteristics:

• The system has a number of decentralized storages that can store a certain amount
of some resource.

• Each storage can be filled or emptied at some maximal rate(s).
• A central controller has the responsibility of balancing supply and demand by

use of the storages.

We illustrate the approach by a specific example, a so-called “smart grid” electric
power system, wherein consumers can vary their power consumption within certain
bounds by allowing devices to store more or less energy at convenient times [8]. The
obvious method to do so physically is by exploiting large thermal time constants in
deep freezers, refrigerators, local heat pumps, etc.; extra energy can be stored during
off-peak hours, and the accumulated extra cooling can then be used—slowly—by
turning compressors and similar devices on less frequently during peak hours. Im-
plementing such schemes is considered a necessity for adoption of large amounts
of unpredictable renewable energy sources in the European power grid and requires
local measurement and feedback of current energy and power demand. Consumers
equipped with such measurement and feedback capabilities are called intelligent
consumers.

Structural flexibility of large scale systems is important, since subsystems and
components may be added, removed or replaced during the system’s lifetime. In our
example, it is easy to imagine customers wanting to sign up for a contract with a
power company, such that the customer is assigned the necessary equipment to be-
come an intelligent consumer. Thus, the top level system should be flexible enough
to accommodate new consumers under its jurisdiction without it being necessary to
perform significant retuning and/or restructuring every time new consumers appear.
Furthermore, it is a basic requirement that the system be stable and provide good
performance at all times.

15 Hierarchical MPC for PnP Resource Distribution 341

     irmgn.ir



. . .

System

C1 C2 C3 CN

∫
W

w1 w2 w3 wN

w

. . .

measurements High-level
controller

External
compensation

wext

Disturbance

Balance

. . . . . .

Fig. 15.1 Problem set-up.

The outline of the rest of the chapter is as follows: Section 15.2 explains the
problem in a general setting, while Sec. 15.3 presents the proposed algorithm for
resource sharing. Section 15.4 shows that the resulting architecture remains stable
for increasing numbers of units. Section 15.5 shows a simulation example of the
algorithm applied to an electric smart grid with a small number of consumers, and,
finally, Sec. 15.6 offers some concluding remarks. Note that, unless otherwise stated,
all time-varying quantities (signals) are assumed to be real scalars. Vectors and ma-
trices are indicated with boldface symbols, while sets are written in calligraphic
font.

15.2 Problem Formulation

We consider a set-up as depicted in Fig. 15.1. The high level controller is given the
task of following a specific, externally generated trajectory of consumption and/or
production of a certain resource. The objective is to maintain a certain system-level
balance (between demand and production); the error in the balance is represented
by the scalar signal W (t), which must be driven to zero as the time t tends to infinity.
The demand and production must match over time, however, and any disturbance
w(t) is hence treated as a short-time change in the balance, whereas W (t) is an
integrated error signal. The high level controller can compensate directly for the
disturbance w(t) by assigning some of the resource flow wext(t) to this task, but at a
significant cost. However, the high level controller also has a number of units, which
we will in general refer to as consumers, Ci, i = 1, . . . ,N, under its jurisdiction. Each
one of these consumers consumes the resource at a certain, controllable rate wi(t).
The high level controller is able to direct time-varying resources to the consumers,
but must ensure that each consumer on average receives a specific amount of the
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resource, and certain upper and lower bounds on the consumption rate, wi and wi,
may not be exceeded. By doing so, the consumption compensates for some of the
disturbance w(t), at a lower cost than the direct compensation signal wext(t). That
is, it is advantageous to utilize the consumers as much as possible, subject to the
aforementioned constraints.

This set-up could for instance be interpreted as a supply chain management sys-
tem, where the challenge is to balance demand and supply by minimizing the excess
supply W (t). The demand and supply should in this interpretation be associated with
the “disturbance” signal w(t), which can be thought of as short-term market fluctu-
ations, supply irregularities, etc. The system has a number of storages Ci available,
each currently being filled at the rate wi(t). The maximal capacities and maximal
filling/emptying rates of each storage should be exploited in such a way that the
need for “external compensation” wext(t) is minimized. In this interpretation, wext

corresponds, depending on the sign, either to having to rent external storages or to
have to buy components from more expensive suppliers. Thus, the goal of the algo-
rithm is to try to balance the risk of individual storages running empty against the
risk of having overproduction or unsatisfied demand.

In the following, let I = {1,2, . . . ,N} denote an index set enumerating the con-
sumers. The high level controller must solve the following optimization problem at
any given time t:

min
wi,wext

∫ t+Th

t
φ (W (τ),wext(τ),

dwext

dt
)dτ (15.1)

subject to W ≤W (τ)≤W

wi ≤ wi(τ)≤ wi, ∀i ∈ I

where W and W are constraints on the balance and φ : R×R×R→R+ is a smooth,
convex cost function of the balance error, the external resources that need to be
acquired, and the changes in these resources (motivated by the fact that it is often
more costly to acquire extra resources on a very short notice); φ is typically chosen
as a linear or quadratic cost function. Th is the prediction horizon of the controller.
For simplicity, and without loss of generality, the consumption by the consumers is
assumed cost-free.

Let Wi(t) denote the amount of resource accumulated in Ci, and η i ≥ 0 denote a
drain rate, respectively; η i is assumed to be constant for simplicity. Each consumer
is characterized by its own linear state equation:

dWi(t)
dt

= wi(t)−η i (15.2)

which must satisfy 0≤Wi(t)≤W i at all times. Note that this model implies that the
consumers are mutually independent. The goal that each consumer receive a specific
amount of the resource on average may be expressed as the integral constraint

1
Tres

∫ Tres

0
|wi(τ)−η i|dτ = Wi,ref (15.3)
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where Tres is some appropriate time span. Obviously, we must require that 0 ≤
Wi,ref ≤W i.

Note that, since the dynamics contain only pure integrators, (15.1) can easily be
approximated by a discrete-time problem of the form

min
wi,wext

(t+Th)/Ts

∑
k=t/Ts+1

φ(W (kTs),wext(kTs),wext((k− 1)Ts)) (15.4)

subject toW ≤W (kTs)≤W

wi ≤ wi(kTs)≤ wi, ∀i ∈ I

where Ts is the sampling time. For simplicity, we will often drop Ts from the notation
in the sequel, writing, e.g., w(k) as shorthand for w(kTs).

In order to solve the optimization problem, the high level controller in principle
requires access to all states in the system, including the internal states Wi(t). This
may lead to a very heavy communication load on distributed systems if the number
of consumers is significant. Furthermore, the computational complexity of the opti-
mization problem grows rapidly with the number of consumers as well. This means
that adding more consumers into the system may pose significant problems in prac-
tice. Thus, a purely centralized solution to the problem may be optimal in terms of
maintaining the supply/demand balance but is not desirable from a practical point
of view.

15.3 Proposed Architecture

In the following we propose a new architecture for achieving the control objective
that requires significantly less system-wide communication, while at the same time
being more flexible with respect to changes in the number of consumers. We now
consider the modified set-up in Fig. 15.2, where w(t) is an external disturbance
and wa(t) = ∑N

i=1 wi(t) is the cumulative rate of resource absorbed by all Ci. As
mentioned in the previous section, the main objective of the high level control is to
keep the resource balance governed by

dW(t)
dt

= w(t)−wext(t)−wa(t) (15.5)

at zero. It is assumed that the top level controller can control wext(t) directly and is
constrained only by a rate limit, but we would like to keep the variations, i.e., the
time derivative of wext(t), small as well.

Between the controller and NA≤N subsets of the intelligent consumers, we intro-
duce a number of so-called aggregators A j,1≤ j ≤ NA. Together, these aggregators
serve as an interface between the top level and the intelligent consumers. To each
aggregator A j we assign a number of consumers identified by an index set J j ⊂ I,
where for all k, j = 1, . . . ,NA, we have J j ∩J l = ∅, l 6= j, and ∪NA

j=1J j = I. Let n j

344 J. Bendtsen, K. Trangbaek, and J. Stoustrup
     irmgn.ir



∫

C1 CNC3C2

w̄ j

w j
mid

w̄1

w1
mid

w1

w1 w2 w3 wN

w j
req

w

W
wext

w1
req

Aggregator 1 Aggregator j

. . . . . .

. . .

High-level
controller

w j

Fig. 15.2 Modified architecture.

denote the cardinality of J j , i.e., the number of consumers assigned to aggregator
A j. The objective of each aggregator is to make sure that:

• the maximum capacity is available for the upper level at any time instance;
• the resources allocated to consumers are distributed roughly uniformly over the

number of consumers;
• the deviation from the nominal consumption is minimized for each consumer;
• the capacity constraint for each consumer is not violated;
• the rate constraint for each consumer is not violated

As in the previous section, we approximate the continuous-time system with a
discrete-time version.

The communication between the high level controller is indicated on Fig. 15.2;
each aggregator A j provides the top level with a small number of simple parameters
to specify the constraints of the consumers. In particular, the top level is informed
of w(k) and w(k), which are current bounds on the cumulative resource that can be
consumed by the consumers assigned to A j, that is, bounds on

w j
a(k) = ∑

i∈J j

wi(k)

that can be guaranteed over a specified horizon from time t. These limits neces-
sarily depend on both resource storage rate and limitations among the individual
consumers and as such depend in a complicated fashion on the horizon length. Sev-
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eral choices can be made with respect to the length of this horizon. A simple choice
is to provide the limits for one sample ahead. Various choices could be made here,
for instance providing a time-varying profile of limits over the control horizon, or
the aggregators could simply provide fixed limits that can be sustained over the en-
tire control horizon, although the latter would tend to be conservative. In addition
to these limits, A j provides w j

mid(k), a midranging signal that informs the high level
controller of the total resource rate would currently be most helpful in bringing the
intelligent consumers under its jurisdiction close to their reference resource levels
Wi,ref(k).

The aggregator level, as a whole, thus attempts to maintain wa(k) = ∑NA
j=1 w j

req(k),
while the high level controller, in turn, needs to solve the optimization problem

min
w j

req,wext

Nh

∑
k=1

φ(W (k),wext(k),wext(k−1))+β
NA

∑
j=1

Nh

∑
k=1

(w j
req(k)−w j

mid(k))
2 (15.6)

subject toW ≤W (k)≤W

w j(k)≤ w j
req(k)≤ w j(k), 1≤ j ≤ NA

which is of significantly lower dimension than (15.1) because the number of deci-
sion variables is smaller (since NA < N). The term

β
NA

∑
k=1

Nh

∑
k=1

(w j
req(k)−w j

mid(k))
2

is introduced to ensure that the high level controller will assign resources to the
aggregators such that the intelligent consumers can approach their desired levels of
storage, away from their individual limits; β is a constant to be specified later.

That is, in periods where the load is relatively steady, the high level controller
will make w j

req approach w j
mid , thereby increasing the short term resource reserves

for future load changes (positive or negative).
At each sample, the aggregator A j solves the simple optimization problem

min
wi

∑
i∈J j

(Wi(k +1)−Wi,ref)
2 (15.7)

subject to ∑
i∈J j

wi(k) = w j
req(k)

wi ≤ wi(k)≤ wi

0≤Wi(k +1)≤W i

with Wi(k +1) = Wi(k)+ Tswi(k), where Ts is the sampling time.
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15.4 Stability, Complexity and Performance Analysis

In this section, we shall discuss stability, complexity and performance of the archi-
tecture proposed above.

15.4.1 Stability

First, in order to assess stability, it is of course necessary to establish a sensible def-
inition, especially as the main obstruction to the standard definition is the presence
of constraints.

Intuitively, stability for a system of the type described above will mean that

• for constant inputs, all trajectories tend to constant values;
• in steady state, a minimal number of constraints are invoked;
• wind-up behavior of system states is avoided for any bounded input set.

In the following, we will give an outline of a procedure for constructing controllers
that stabilize the system in such a way that it satisfies these properties. For ease of
the presentation we will only consider one aggregator.

Suppose the system satisfies the following assumptions.

1. The external load is constant;
2. The number of intelligent consumers is non-decreasing;
3. Any new ICs that appear in the system start with an initial amount of resource

in storage equal to Wi,ref;
4. As long as the sum of all deviations from Wi,ref does not increase, the constraints

w and w do not become narrower (i.e., w does not increase, and w does not
decrease).

The last assumption is technical; we aim to choose the reference levels precisely
such that the constraints are as wide as possible, thus making sure that this assump-
tion is satisfied by design. Indeed, in order to accommodate the stability notions
introduced above, we will modify the performance objective sligthly, so that we
may be able to follow a standard dual mode approach to stability analysis of model
predictive control with terminal constraints [7].

First of all, we note that the overall system is a linear, constrained system. There-
fore, at the top level we consider the state vector

x(k) =




W (k)
wext(k)−w(k)

WΣ (k)




where WΣ (k) = ∑i∈I(Wi(k)−Wi,ref) denotes the total amount of surplus resources
in the ICs. Next, we define the function
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l(k) = x(k)T Qx(k)+ R∆wext(k)2

where Q ∈ R3×3 and R ∈ R+ are constant weight factors, and ∆wext(k) = wext(k +
1)−wext(k). If Q is chosen as a symmetric positive definite matrix, it is easily seen
that l is a positive definite, smooth, unbounded function of x with minimum in x = 0.
Based on this function, we define the function

V (k0) =
∞
∑

k=k0+1

l(k) (15.8)

along with the control optimization

min
wext,wreq

V (k0)

subject toWΣ (k0 +Nh) = 0 (15.9)

w(k)≤ wreq(k)≤ w(k)

where (15.9) is a terminal constraint.
Given the properties of l(k), we see that V can be used as a Lyapunov function,

i.e., if we can ensure that it decreases every sample, the closed loop will be stable.
Assuming that the constraints are not active after k0 + Nh, the optimal trajectory

will be described by the dynamics x(k + 1) = Ãx(k), where Ã can be found as the
closed-loop matrix resulting from a standard LQR problem. By construction, all
eigenvalues of Ã have modulus less than one, so we can find a symmetric positive
definite matrix Q̄ that solves the discrete Lyapunov equation

ÃT Q̄Ã = Q̄−Q

We can then write

V (k0) =
k0+Nh

∑
k=k0+1

l(k)+
∞
∑

k=k0+Nh+1

l(k) =
k0+Nh

∑
k=k0+1

l(k)+ x(k0 + Nh)
T Q̄x(k0 + Nh)

(15.10)
which means that we perform the optimization on a finite horizon with an extra
weight on the terminal state. In order to realize that V is decreasing, it is enough
to note that as the horizon recedes more flexibility is added to the optimization,
meaning that minV (k0 + 1)≤minV (k0)− l(k).

The reason that we can assume that constraints are not active at the end of the
control horizon follows from Assumption 4 and the terminal constraint (15.9).
Thus, under the assumptions above, we can say the following:

• Each aggregator drives the amount of resource stored in the ICs under its juris-
diction towards their reference values.

• In steady state, the minimal number of constraints are active. This follows from
the properties of quadratic optimization; if the number of active constraints is
nonminimal, the quadratic cost will always become smaller by shifting load from
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one of the subsystems with an active constraint to one or more subsystems with
inactive constraints.

• Wind-up behavior of system states is avoided for any bounded input set, since all
the individual subsystems are open loop (marginally) stable.

It should finally be noted that the terminal constraint (15.9) was only included in
the above to make the argumentation easier; it does not appear to be necessary in
practical implementations and has not been included in the examples in Sec. 15.5.

15.4.2 Complexity

In terms of complexity, the proposed design methodology scales in the same way as
quadratic optimization, which is O(N3), where N is the number of consumers.

It should be noted, however, that the optimization problem has a high degree
of sparsity. This has not been exploited in the implementation applied in the sim-
ulations below, but it should be expected that the complexity could be further re-
duced by implementing a dedicated quadratic programming solver, which exploits
the mentioned sparsity. Further considerations on complexity can be found in Sec.
15.5.2.

15.4.3 Performance

In terms of performance, the following five parameters are decisive:

• the prediction horizon;
• the total installed flexible capacity;
• the instantaneous flexible capacity;
• the total cumulative rate limitation of flexible units;
• the instantaneous cumulative rate limitation of flexible units

The prediction horizon is a crucial parameter, since the overall balance W is the
result of an integration. This means that for longer horizons the potential of using
flexible units becomes much larger, since the slack variables relative to the saturation
limits needed for guaranteed stabilization of the integrator becomes much smaller
for a longer time horizon.

The total installed flexible capacity is the sum of maximal resource storages for
all units, i.e., Ctot = ∑N

i=1W i. This capacity clearly scales with the number of units.
The instantaneous flexible capacity is the present unexploited part of Ctot. Since

flexibility is exploited bidirectionally in reaction to either increasing or decreasing
load, Ctot has to be divided between upwards and downwards movement. The dy-
namics of this quantity depends on the control algorithm and of the control horizon.
Due to the additive nature of the quadratic programming cost function, the instanta-
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neous capacity for the proposed algorithm scales linearly with the number of units,
which is clearly optimal.

The total cumulative rate limitation of flexible units is the rate limitation experi-
enced by the high level controller and equals ∑N

i=1 wi for positive load gradients and
∑N

i=1 wi for negative load gradients. This parameter scales linearly with the number
of installed units.

The instantaneous cumulative rate limitation of flexible units is current rate lim-
itation experienced by the high level controller and is equal to the sum of individual
rate limits for those units, which are not in saturation. Again, due to the additive
nature of quadratic programming costs, the instantaneous rate limitation scales lin-
early with the number of installed units. The average ratio (for a given load pat-
tern) between instantaneous and total cumulative rate limitations is controlled by
the weighting factor ρ , which constitutes the trade-off between capacity limitation
and rate limitation. For a given load pattern, more average capacity can be obtained
at the cost of rate limitation and vice versa, but the quadratic optimization guaran-
tees Pareto optimality.

The sampling times used at aggregator and top levels also influences perfor-
mance. Since the dynamics consist entirely of pure integrators, there is no approx-
imation in the discretization itself, but of course the flexibility in the optimization
will be smaller for a larger sampling time.

15.5 Simulation Example

The example described in this section is inspired by a vision for future Smart Grid
technologies called virtual power plants, which is depicted in Figure 15.3.

The main objective of the top level control is to keep the energy balance governed
by

dE(t)
dt

= Pext(t)−Pload(t)−Pa(t) (15.11)

at zero. Pa = ∑i Pi is the power absorbed by the intelligent consumers (ICs). Pload is
the power absorbed by other consumers, and is considered as a disturbance here. Pext

is the power produced by a number of suppliers such as power plants. It is assumed
that the top level controller can control Pext directly and is restrained only by a rate
limit, but we would also like to keep the time derivative small.

Each intelligent consumer is characterized by its own energy balance

dEi(t)
dt

= Pi(t) (15.12)

which must satisfy 0 ≤ Ei(t) ≤ E i at all times. Furthermore, each intelligent con-
sumer can only consume a limited amount of power Pi ≤ Pi(t)≤ Pi. The aggregator
serves as an interface between the top level and the ICs. It attempts to maintain
Pa(t) = Preq(t) and provides the top level with simple parameters to specify the con-
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Fig. 15.3 A vision for smart grids: virtual power plants that aggregate producing or consuming
units.

straints of the ICs. In particular, the top level is informed of P and P, upper and lower
limits on Pa that can be guaranteed over the horizon Nl . These limits depend on both
power and energy storage limitations, and as such depend in a complicated fash-
ion on the horizon length. In addition to the limits, the aggregators provide Pmid, a
midranging signal that tells the top level which Preq would be most helpful in bring-
ing the ICs close to their reference energy levels Eref,i. In periods where the load is
relatively steady, the top level can then prioritize, keeping the energy levels at the
reference and thereby increasing the short term reserves for future load changes.

How to choose these reference levels is again a complicated question of the con-
sidered horizon. If we consider a long horizon, then we might like to have the same
energy reserve in both directions, which would lead to Eref,i = E i/2. On the other
hand, some ICs have a much higher P than −P, and are therefore much better at
providing a positive than negative absorption, while others are better at providing
negative absorption. With a short horizon it would make sense to keep the first kind
at a low energy level and vice versa. Here, we choose

Eref,i = E i
Pi

Pi−Pi

which corresponds to making the time to fill the energy reserves equal to the time to
fully empty it.

At each sample, at time t, the aggregator solves the simple optimization problem
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min
Pi

∑ (Ei(t +Ts)−Ei,ref)
2,

subject to

∑Pi = Preq,

Pi ≤ Pi(t)≤ Pi,

0 ≤ Ei(t +Ts)≤ E i

with Ei(t + Ts) = Ei(t)+ TsPi, thereby distributing the power in a way that brings
the energy levels as close to the reference as possible in a quadratic sense.

The top level control optimizes over a prediction horizon Np. It minimizes the
performance function

Jt =
Np

∑
k=1

E(t +Tsk)2 +β p

Nc

∑
k=1

(Pext(t +Tsk)−Pext(t +Ts(k− 1)))2

+β r

Nc

∑
k=1

(Preq(t + Tsk)−Pmid(t))
2

with Nc samples of Pext and Preq as decision variables.
The optimization is subject to constraints on the decision variables. There is a

rate limit on the power from the power plants:

Pext ≤ Pext(t +Tsk)−Pext(t + Ts(k− 1))≤ Pext

As mentioned, the aggregator provides limits on Pa that can be sustained over a
horizon Nl . These limits are conservative in the sense that if Preq is, for instance,
negative for the first part of the horizon, then a positive Preq higher than P may
be feasible for the rest. However, in order to simplify the top level computations,
the constraint P(t) ≤ Preq(t + kTs) ≤ P(t) is imposed over the whole horizon. A
simulation of this scheme is shown in Fig. 15.4. The controller parameters used
are Ts = 1, Nl = Nc = 4, Np = 5, β p = 0.1, β r = 10−4. The load is generated by
a first order auto-regressive process with a time constant of 100 s, driven by zero-
mean Gaussian white noise with unit variance. There are 20 ICs with parameters
shown in Table 15.1 becoming available as time passes, making it possible for the
aggregator to provide increasingly wider constraints on Preq. The result is that the
energy balance can be controlled much better while also using a smoother Pext. The
requested consumption Preq is shown together with P(t) and P(t), computed by the
aggregator. It is noted how the constraints widen as more ICs become available, but
will shrink when the reserve is being used. Pmid is computed as the Preq that would
bring the energy levels to the reference in Nl samples, ignoring power limits.

The energy balance of the ICs is shown in Fig. 15.5. The energy constraints and
reference are shown by dashed lines. It can be seen that additional consumers are
“plugged in,” the system automatically incorporates these new consumers and these
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Fig. 15.4 Simulation example.

Table 15.1 Parameters for 20 consumers in simulation

i 1 2 3 4 5 6 7 8 9 10

E i 1.0 4.0 4.0 3.0 6.0 10.0 1.0 4.0 9.0 10.0

Pi -1.7 -1.4 -0.2 -1.3 -1.6 -1.3 -0.7 -1.9 -1.1 -1.1

Pi 1.4 0.8 1.8 0.3 0.9 1.1 1.2 0.2 0.2 0.2

i 11 12 13 14 15 16 17 18 19 20

E i 9.0 1.0 2.0 10.0 6.0 1.0 9.0 8.0 2.0 9.0

Pi -0.2 -1.0 -1.6 -1.3 -0.3 -1.1 -1.9 -0.2 -0.9 -1.6

Pi 1.1 1.2 1.6 1.9 0.4 0.9 1.8 0.8 0.6 0.5

new resources are exploited throughout the control hierarchy in order to improve
the power balance at the top level.
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Fig. 15.5 Simulation with aggregators.

15.5.1 Performance Study

The aggregators perform two functions, approximation and aggregation. The main
purpose is the aggregation of several consumers into a simple virtual big consumer,
thereby simplifying the task at the top level. The approximation, simplifying the
power limits into an average over the horizon, is only necessary to facilitate the ag-
gregation. In fact, if each aggregator has only one consumer, then the computation at
the top level is not simplified at all. In the next section, the effects of aggregation on
the performance will be studied, but before that the question arises of how much the
conservative approximation affects performance compared to a centralized scheme
as in Fig. 15.1, where the high level controller directly controls the consumers. We
compare two control schemes:

Centralized controller: The top level controller optimizes a standard MPC objec-
tive

min
Pi

t+Np

∑
k=t+1

(E(k)2 +β p(Pext(k)−Pext(k−1))2 + β e ∑(Ei(k)−Eref,i)
2)
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Fig. 15.6 Performance comparison with a centralized control for increasing number of aggrega-
tors. Solid: ratio of variances of balance. Dashed: ratio of variances of derivative of external power.

for i = 1, . . . ,N, over the consumption rates of all consumers over a horizon Np.
The control is not fully optimal, since the horizon is finite. Therefore, the last term
is used for keeping the energy levels close to the references if the reserves are not
needed immediately.

Approximating control: The scheme described in the previous section, but each
aggregator handles only one consumer. In this way, the comparison will reflect the
effects of the approximation.

We perform simulations on a system with a small number of consumers, N. The
consumer power limits are evenly distributed between ±0.4/N and ±2.4/N, the
maximum energy levels between 0.8 and 4.8. Pext = −0.5, Pext = 0.5. The load
follows the same behavior as in the above example.

The approximating control has the same parameters as in the above example. The
centralized controller has the same control horizon and performance weights, and
β e = 10−4.

For each particular N, 100 simulations of 200 samples are performed. For each
simulation the ratio of variances is computed. Figure 15.6 shows the mean of these
ratios as N grows. The solid line shows the ratio between the variance of E when the
approximating control is used and when using the centralized control. The dashed
line shows the same but for the variance of Pext(k)− Pext(k− 1). It is noted that
the ratios are quite close to 1, meaning that the performance of the approximating
control is almost as good as for the centralized control. Importantly, the ratios seem
to decrease towards 1 as N grows. It was not feasible to perform the simulations
for higher N, as the computational complexity grew too high. The result leads us to
conjecture that the approximation only has a small effect on the performance, and
that this effect is unimportant for a large number of consumers.
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Fig. 15.7 CPU times for simulation with varying numbers of aggregators.

15.5.2 Complexity Study

The aggregators serve as a simplifying interface to the relatively complex top level
control, and as such even a configuration with one aggregator is computationally less
complex than it would be to let the top level control work on a full model. However,
for a large number of ICs, the aggregator can also itself become too complex. It is
therefore necessary to allow for more than one aggregator. This also provides the top
level with more detailed information and can therefore be expected to yield better
performance. On the other hand, more aggregators will make the top level control
more complex, so there is a trade-off between complexity at the top and aggregator
levels and also with respect to performance.

Here, we examine the effects of the number of aggregators, NA, through a simu-
lation example. We consider a situation with 800 ICs with the Eis evenly distributed
between 0.01 and 0.14, and P̄is and −Pis evenly distributed between 0.01 and 0.06.
The other parameters are Ts = 1, Nl = Nc = 4, Np = 5, β p = 1, β r = 10−4. The load
is generated by a discrete time process (1−0.99q−1)(Pload(k)−100) = e(k), where
q−1 is the delay operator and e is white Gaussian noise with variance 16.

In all the simulations the same 400 sample load sequence was used, only NA was
changed. Figure 15.7 shows the result. The top plot shows the (scaled) time con-
sumption of the top level controller. This grows with N3

A. The second plot uses the
same scaling and shows the average time consumption of each of the aggregators.
As the number of ICs handled by each aggregator is inversely proportional to the
number of aggregators, this consumption is inversely proportional to N3

A. It is noted
that the computational complexity of the top level and of each of the aggregators is
approximately equal with around 6 aggregators, so this may be a sensible choice.
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The variance of the balance E and of the derivative of Pext are shown in the next
two plots. As expected, more aggregators give better performance, but the difference
is rather small.

15.6 Discussion

In this chapter a design methodology for a three level hierarchical control architec-
ture was proposed. The emphasis was on systems that accumulate the production
and/or consumption of resources through the levels, exemplified by irrigation sys-
tems, sewer systems, or power production and consumption systems.

The presented solution was based on MPC-like algorithms, which themselves
are based on on-line quadratic programming solvers. The algorithmic complexity
is very low and approximately scales with the number of units in the system to
the power of 1.5, even without exploiting a significant sparsity of the optimization
problems involved.

The approach has the specific feature that it facilitates online modifications of
the topography of the controlled system. In particular, units at the lower level can
be added or removed without any retuning of any controllers. This plug-and-play
control property is enabled by the modular structure of the involved cost functions
of the optimizations.

The proposed methodology was exemplified by a simulation of a control system
for a small electrical power production and consumption system, where the power
flexibility of a number of consumers was exploited. For this example, a significant
improvement of flexibility at the grid level was obtained.

Acknowledgements This work was supported by The Danish Research Council for Technology
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Chapter 16
Hierarchical Model-Based Control for
Automated Baggage Handling Systems

Alina N. Tarău, Bart De Schutter and Hans Hellendoorn

Abstract This chapter presents a unified and extended account of previous work
regarding modern baggage handling systems that transport luggage in an automated
way using destination-coded vehicles (DCVs). These vehicles transport the bags at
high speeds on a network of tracks. To control the route of each DCV in the system
we first propose centralized and distributed predictive control methods. This results
in nonlinear, nonconvex, mixed integer optimization problems. Therefore, the pro-
posed approaches will be expensive in terms of computational effort. As an alter-
native, we also propose a hierarchical control framework where at higher control
levels we reduce the complexity of the computations by simplifying and approxi-
mating the nonlinear optimization problem by a mixed integer linear programming
(MILP) problem. The advantage is that for MILP problems, solvers are available
that allow us to efficiently compute the global optimal solution. To compare the
performance of the proposed control approaches we assess the trade-off between
optimality and CPU time for the obtained results on a benchmark case study.
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Fig. 16.1 DCVs running on a network of tracks (Photo courtesy of Vanderlande Industries)

16.1 Introduction

The state-of-the-art technology used by baggage handling systems at airports to
transport the bags in an automated way incorporates scanners that scan the (elec-
tronic) baggage tags on each piece of luggage, baggage screening equipment for se-
curity scanning, networks of conveyors equipped with junctions that route the bags
through the system and destination coded vehicles (DCVs). As illustrated in Fig.
16.1, a DCV is a metal cart with a plastic tub on top. These carts are propelled by
linear induction motors mounted on the tracks. The DCVs transport the bags at high
speed on a network of tracks. Note that the DCVs are used in large airports only,
where the distances between the check-in desks and the endpoints towards which
the baggage has to be transported are very large (for these airports the conveyor
systems are too slow, and therefore, a faster carrier is required for each bag).

In this chapter we consider a DCV-based baggage handling system. Higher-level
control problems for such a system are route assignment for each DCV (and, im-
plicitly, the switch control of each junction), line balancing (i.e., route assignment
for each empty DCV such that all the loading stations have enough empty DCVs at
any time instant) and prevention of buffer overflows. The velocity control of each
DCV is a low level control problem. Low level controllers determine the velocity of
each DCV so that a minimum safe distance between DCVs is ensured and so that
the DCVs are held at switching points, if required. So, a DCV runs at maximum
speed, vmax, unless overruled by the local on-board collision avoidance controller.
Other low level control problems are coordination and synchronization when a bag
is loaded onto a DCV (in order to avoid damaging the bags or blocking the sys-
tem), and when unloading it to its endpoint. We assume low level controllers are
already present in the system, and we focus on the higher-level control problems
of a DCV-based baggage handling system, in particular the route assignment of the
DCVs.

Currently, the track networks on which the DCVs transport the baggage have a
simple structure, with the loaded DCVs being routed through the system using rout-
ing schemes based on preferred routes. These routing schemes adapt to respond to
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the occurrence of predefined events. However, the load patterns of the system are
highly variable, depending on, e.g., the season, time of the day, type of aircraft at
each gate or number of passengers for each flight [11]. Also, note that the first objec-
tive of a baggage handling system is to transport all the checked-in or transfer bags
to the corresponding endpoints before the planes have to be loaded. However, due
to an airport’s logistics, an endpoint is allocated to a plane only within a given time
span before the plane’s departure. Hence, the baggage handling system performs
optimally if each of the bags to be handled arrives at its given endpoint within a spe-
cific time window. So, predefined routes are far from optimal. Therefore, we will
not consider predefined preferred routes, but instead we will develop and compare
efficient control methods to determine the optimal routing of the DCVs.

In the literature, the route assignment problem has been addressed to a large
extent for automated guided vehicles (AGVs); see e.g., [9, 12]. Traditionally, the
AGVs that execute the transportation tasks are controlled by a central server via
wireless communication. Hence, the computational complexity of the centralized
routing controller increases with the number of vehicles to be routed. In this context
[18] presents a decentralized architecture for routing AGVs through a warehouse.
However, even for a small number of AGVs to be used for transportation (12 AGVs),
the communication requirements are high. But, in baggage handling systems the
number of DCVs used for transportation is large (typically airports with DCV-based
baggage handling systems have more than 700 DCVs). Hence, in practice, designing
an on-board routing controller for each DCV is not yet a tractable problem. Also, we
do not deal with a shortest-path or shortest-time problem, since, due to the airport’s
logistics, we need the bags at their endpoints within given time windows.

The DCV routing problem has been presented in [3], where an analogy to data
transmission via Internet is proposed, and in [8] where a multiagent hierarchy has
been developed. However, the analogy between routing DCVs through a track net-
work and transmitting data over Internet has limitations [3], while the latter refer-
ence [8] does not focus on control approaches for computing the optimal route of
DCVs, but on designing a multiagent hierarchy for baggage handling systems and
analyzing the communication requirements. Moreover, the multiagent system of [8]
faces major challenges due to the extensive communication required. Therefore, the
goal of our work is to develop and compare efficient control approaches (viz., pre-
dictive control methods) for routing each DCV transporting bags to its end point.
This chapter integrates results of previous work [14, 16, 17], presents all the meth-
ods that previously proved to be efficient and compares the obtained results for a
benchmark case study over typical and extreme scenarios. Moreover, we address
the trade-off between accuracy of the overall performance of the system and the
total computational effort required to compute the optimal solution.

This chapter is structured as follows. In Sec. 16.2 we describe the automated
baggage handling process. Next, in Sec. 16.3, we present the control objective that
will be later on used when solving the DCV routing problem. Furthermore, in Sec.
16.4, we propose several control approaches for determining the optimal route for
each bag through the baggage handling network. First we develop and compare cen-
tralized and distributed predictive methods that could be used to maximize the per-

16 Hierarchical Model-Based Control 361

     irmgn.ir



bags

on

conveyor

belts
planes

onto

loaded

to be

bags

conveyors end points

network

of tracks

L1

L2

LL

U1

U2

UU

Fig. 16.2 Baggage handling system using DCVs.

formance of the DCV-based baggage handling system. But these methods involve
nonlinear, nonconvex, mixed integer optimization problems that are very expensive
to solve in terms of computational effort. Therefore, we also propose an alterna-
tive approach for reducing the complexity of the computations by simplifying the
nonlinear optimization problem and writing it as a mixed integer linear program-
ming (MILP) optimization problem, for which solvers are available that allow us to
efficiently compute the global optimal solution. This approach will then be incorpo-
rated in a hierarchical control framework for routing the DCVs. The analysis of the
simulation results and the comparison of the proposed control methods and control
frameworks are elaborated in Sec. 16.5. Finally, in Sec. 16.6 we draw conclusions
and present possible directions for future research.

16.2 System Description and Original Model

Now we briefly recapitulate the event-driven route choice model of a baggage han-
dling system that we have developed in [13]. The nodes via which the DCVs enter
the track network are called loading stations, the nodes via which the DCVs exit the
network are called unloading stations, while all the other nodes in the network are
called junctions. The section of track between two nodes is called link.

Consider the general DCV-based baggage handling system with L loading sta-
tions and U unloading stations sketched in Fig. 16.2. The DCV-based baggage han-
dling system operates as follows: Given a demand of bags and the network of tracks,
the route of each DCV (from a given loading station to the corresponding unloading
station) has to be computed subject to operational and safety constraints such that
the performance of the system is optimized.

The model of the baggage handling system we have developed in [13] consists of
a continuous part describing the movement of the individual vehicles transporting
the bags through the network and of the following discrete events: loading a new
bag onto a DCV, unloading a bag that arrives at its endpoint, updating the position
of the switches into and out of a junction and updating the speed of a DCV. The
state of the system consists of the positions of the DCVs in the network and the
positions of each switch of the network. According to the discrete-event model of
[13], as long as there are bags to be handled, the system evolves as follows: We shift
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the current time to the next event time, take the appropriate action and update the
state of the system.

Let DCVi denote the DCV that transports the ith bag that entered the track net-
work up to the current time instant. According to the model, for each bag that has to
be handled, we compute the time instants when each bag enters and exits the track
network. Let t load

i denote the time instant when the ith bag that entered the track
network is loaded onto a DCV (so, this is DCVi) and let tunload

i denote the time in-
stant when the same bag is unloaded at its endpoint. Then we consider two models
of the baggage handling system which will be used for (1) route control—where we
determine a route for each DCV, and consequently, the switch will be positioned
so that each DCV travels on the assigned route and (2) switch control—where we
determine switch positions over the simulation period, respectively:

t =Mroute ctrl(T ,x(t0),r
)

or
t =Mswitch ctrl(T ,x(t0),U

)

where:

• t = [t load
1 . . . t load

Nbags tunload
1 . . . tunload

Nbags ]T with Nbags the number of bags to be handled
in the given simulation period;

• T is the tuple that consists of the arrival times at loading stations for all the bags
to be handled;

• x(t0) is the initial state of the system with t0 the initial simulation time;
• r is the route control sequence defined as follows: assume that there is a fixed

number R of possible routes from a loading station to an unloading station and
that the R routes are numbered 1,2, . . . ,R. Let r(i)∈ {1,2, . . . ,R} denote the route
of DCVi. Then the route sequence is represented by r = [r(1)r(2) · · · r(Nbags)]T ;

• U is the switch control input for the entire network defined as U = (u1, · · · ,uS)
with

us = [usw in
s (1) · · · usw in

s (Nbags)usw out
s (1) . . . usw out

s (Nbags)]T for s = 1, . . . ,S

where S is the number of junctions and where usw in
s ( j) is the position of the

switch into junction Ss when the jth bag crosses Ss and usw out
s ( j) is the position

of the switch out junction Ss when the jth bag crosses Ss.
Without loss of generality (i.e., by creating virtual junctions connected by virtual
links of zero length) we can assume each junction to have at most 2 incoming
links (indexed by the labels 0 and 1) and at most 2 outgoing links (also indexed
by 0 and 1). We call the switch that makes the connection between a junction and
its incoming links a switch-in, and the switch that makes the connection between
a junction and its outgoing links a switch-out.

The operational constraints derived from the mechanical and design limitations
of the system are the following: The speed of each DCV is bounded between 0 and
vmax, while a switch at a junction has to wait at least τswitch time units between
two consecutive toggles in order to avoid the quick and repeated back and forth
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movements of the switch, which may lead to mechanical damage. We assume τswitch

to be an integer multiple of τs where τs is the sampling time. In this chapter we
denote the operational constraints by C(t)≤ 0.

16.3 Control Objective

Since the baggage handling system performs successfully if all the bags are trans-
ported to their endpoint before a given time instant, from a central point of view, the
primary objective is the minimization of the overdue time. A secondary objective
is the minimization of the additional storage time at the endpoint. This objective is
required due to the intense utilization of the endpoints in a busy airport. Let Nbags

be the number of bags that the baggage handling system has to handle. Hence, one
way to construct the objective function Jpen

i corresponding to the bag with index i,
i ∈ {1,2, . . . ,Nbags}, is to penalize the overdue time and the additional storage time.
Accordingly, we define the following penalty for bag i:

Jpen
i (tunload

i ) =σ i max(0,tunload
i − tclose

i )+ λ1 max(0,tclose
i − τopen

i − tunload
i ) (16.1)

where tclose
i is the time instant when the endpoint of bag i closes and the bags are

loaded onto the plane, σ i is the static priority of bag i (the flight priority), and
τopen

i is the maximum possible length of the time window for which the endpoint
corresponding to bag i is open for that specific flight. The weighting parameter λ 1 >
0 expresses the penalty for the additionally stored bags. Note that the control actions
involved in r and U influence Jpen

i in the sense that they influence the time instant
when bag i is unloaded. Moreover, all approaches that we propose have in common
the fact that we are interested in tunload

i with respect to the given unloading time
window. Therefore, we have chosen tunload

i as argument of Jpen
i .

Moreover, the above performance function has some flat parts, which yield diffi-
culties for many optimization algorithms. Therefore, in order to get some additional
gradient and also minimize the energy consumption, we also include the time that a
bag spends in the system. This results in (Fig. 16.3):

Ji(tunload
i ) = Jpen

i (tunload
i )+ λ 2(t

unload
i − t load

i ) (16.2)

where λ 2 is a small weight factor (0 < λ 2≪ 1). The final objective function to be
used when we compare the proposed control approaches is given by

Jtot(t) =
Nbags,sim

∑
i=1

Jpen
i (tunload

i ) (16.3)

where Nbags,sim is the number of bags that reached their endpoint during the sim-
ulation period [t0,t0 + τsim), where t0 the initial simulation time and τsim is either
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Fig. 16.3 Objective functions Jpen
i and Ji.

the time instant when all the bags have been handled (and then Nbags,sim = Nbags) or
τsim = τmax sim, with τmax sim the maximum simulation period.

16.4 Control Methods

In this section we develop and compare centralized and distributed predictive meth-
ods that could be used to optimize the performance of the system. The centralized
control method results in a nonlinear, nonconvex, mixed integer optimization prob-
lem that is very expensive to solve in terms of computational effort. Therefore, we
also propose an alternative approach for reducing the complexity of the computa-
tions by approximating the nonlinear optimization problem by a mixed integer linear
programming (MILP) problem. The MILP approach will then be incorporated in a
hierarchical control framework.

16.4.1 Centralized MPC

Since later on we will use model predictive control (MPC) for determining the routes
of the DCVs in the network, in this section we first briefly introduce the basic con-
cepts of MPC.

MPC is an on-line model-based control design method; see e.g., [10]. It uses a re-
ceding horizon principle. In the basic MPC approach, given a horizon N, at step k≥
0, where k is integer-valued, corresponding to the time instant tk = kτs with τs the
sampling time, the future control sequence u(k),u(k + 1), . . . ,u(k + N− 1) is com-
puted by solving a discrete-time optimization problem over the period [tk,tk + Nτs)
so that a performance criterion defined over the considered period [tk,tk + Nτs) is
optimized subject to the operational constraints. After computing the optimal con-
trol sequence, only the first control sample is implemented, and subsequently the
horizon is shifted. Next, the new state of the system is measured or estimated, and a
new optimization problem at time tk+1 is solved using this new information.
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We define now a variant of MPC, where k is not a time index, but a bag index.
If k > 0, then bag step k then corresponds to the time instant t load

k when the kth
bag has just entered the track network, while bag step k = 0 corresponds to the
initial simulation time t0. For this variant of MPC, the horizon N corresponds to
the number of bags for which we look ahead, while computing the control inputs
r(k + 1), r(k + 2), . . . , r(k + N), where r(k + j) represents the route of DCVk+ j
(from a given loading station to the corresponding unloading station). Next, we
implement all the computed control samples, and accordingly we shift the horizon
with N steps. So, once we have assigned a route to a DCV, the route of that DCV
cannot be changed later on.

The total objective function of centralized MPC is then defined as

JCentr MPC
k,N (t(k)) =

k+N

∑
i=1

Ji(t̂unload
i )

where t̂unload
i is the predicted unloading time of DCVi depending on the routes of the

first k+N bags that entered the network, and t(k)= [t load
1 . . . t load

k+N tunload
1 . . . tunload

k+N ]T .
Now let r(k) denote the future route sequence for the next N bags entering the

network at bag step k: r(k) = [r(k + 1) r(k + 2) . . . r(k + N)]T . Accordingly, the
MPC optimization problem at bag step k is defined as follows:

min
r(k)

JCentr MPC
k,N (t(k))

subject to t(k) =Mroute ctrl
(
T ,x(t load

k ),r(k)
)
,

C(t(k))≤ 0

When using centralized MPC, at each bag step k the future route sequence r(k) is
computed over an horizon of N bags so that the objective function is minimized
subject to the dynamics of the system and the operational constraints.

Centralized MPC can compute on-line the route of each DCV in the network, but
it requires a large computational effort, as will be illustrated in Sec. 16.5. Therefore,
we also propose distributed control approaches, which offer a trade-off between the
optimality of the performance for the controlled system and the time required to
compute the solution.

16.4.2 Distributed MPC

One can decrease the computation time required by the centralized control approach
proposed above by implementing a distributed approach that computes local control
actions by solving local optimization problems similar to those that we have detailed
in [15].
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Fig. 16.4 Levels of downstream influence for parallel computation.

16.4.2.1 Levels of Influence

In distributed model predictive route choice control we consider local subsystems,
each consisting of a junction Ss with s ∈ {1,2, . . . ,S}, its incoming and its outgoing
links. But in contrast to decentralized approaches, data is communicated between
neighboring junctions, which are characterized by the concept of level of influence.
The levels of influence are defined as follows.

Let us first assign one or more levels of downstream influence to each junction in
the network. We assign downstream influence level 1 to each junction in the network
connected via a link to a loading station. Next, we consider all junctions connected
to some junction with influence level 1 via an outgoing link, and we assign influence
level 2 to them. In this way we recursively assign an influence level to each junction
with the constraint that at most κmax

d downstream influence levels are assigned to a
given junction.1 For example, see Fig. 16.4, where we define maximum 2 levels of
downstream influence for each junction in the network (κmax

d = 2). For this exam-
ple we have considered the junctions S1 and S2 to have been assigned downstream
influence level 1. Then S3 and S4 are assigned level 2 (since these junctions are
connected to S1 and S2 via outgoing links). Next, we assign influence level 3 to S4,
S5, S3 and S6 (since they are connected to S3 and S4). Note that now S3 and S4

have two levels of downstream influence: 2 and 3. Therefore, S5 and S6 are also as-
signed influence level 4 (since they are connected to S3 and S4 with influence level
3). Similarly we can also assign levels of upstream influence to each junction in
the network. We assign upstream influence level 1 to each junction in the network
connected via a link to an unloading station. Next, we assign upstream influence
level 2 to all the junctions connected to some junction on upstream influence level
1 via its incoming links. Recursively, we then assign levels of upstream influence to
each junction with the constraint that at most κmax

u levels of upstream influence are
assigned to a given junction.

1 The constraint that at most κmax
d downstream influence levels are assigned to a junction limits the

computational complexity and keeps all levels of influence finite.
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16.4.2.2 Distributed MPC with a Single Round of Downstream
Communication

Let us now consider distributed MPC with a single round of downstream communi-
cation. This means that first the local controller of each junction with influence level
1 solves the local optimal switch control problem.

After computing the optimal switch control sequence, each junction with influ-
ence level 1 then communicates to its neighboring junctions at level 2 which bags
(out of all the bags over which we make the prediction for the corresponding junc-
tion with influence level 1) will enter the incoming link of the junction at level 2 and
at which time instant they will do so. Next, we iteratively consider the junctions at
levels 2,3, . . . ,Kdownstream, where Kdownstream is the largest level of downstream in-
fluence assigned in the network. Then, for each junction with influence level larger
than 1, we compute a local solution to the local MPC problem as presented next.

Assume Ss with s ∈ {1, . . . ,S} has influence level κd > 1. Let Sprev
s,l denote the

neighboring junction of Ss connected via the incoming link2 l ∈ {0,1} of Ss (so,
Sprev

s,l has influence level κd− 1). Then, we compute a local solution for Ss to the
local MPC problem defined below over a horizon of

Ns = min
[
Nmax,

1

∑
l=0

(
nhorizon

s,l +npred cross
s,l,0 +npred cross

s,l,1

)]
(16.4)

bags, where Nmax is the maximum prediction horizon for the local MPC problem,
nhorizon

s,l is the number of DCVs traveling on link l ∈ {0,1} going into Ss at the time

instant when we start optimizing and npred cross
s,l,m is the number of DCVs traveling

towards Sprev
s,l on its incoming link m that we predict (while solving the local opti-

mization problem at Sprev
s,l ) to cross Sprev

s,l and to continue their journey towards Ss

(npred cross
s,l,m < nhorizon

s,l ).

Let us now index3 the bags that successively cross junction Ss during the en-
tire simulation period [t0,t0 + τmax sim) as bs,1,bs,2, . . . ,bs,Nbags

s
, where Nbags

s is the
number of bags that cross Ss during the simulation period.

Recall that we use a variant of MPC with a bag index. So, in this approach the
local control is updated at every time instant when some bag has just entered an
incoming link of junction Ss. Let tcrt

s be such a time instant.
Then we determine bag index k such that tcross

s,k ≤ tcrt
s < tcross

s,k+1, where tcross
s,k is

defined as the time instant when bag bs,k has just crossed the junction. If no bag has
crossed the junction yet, we set k = 0.

When solving the local MPC optimization problem for junction Ss, we will use
a local objective function JDistr MPC

s,k,Ns
. The local objective function is computed via a

simulation of the local system for the next Ns bags that will cross the junction and

2 Recall that we may assume without loss of generality that each junction has at most 2 incoming
links.
3 This order depends on the evolution of the position of the switch-in at junction Ss.
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is defined as follows:

JDistr MPC
s,k,Ns

(ts(k)) =
min(Ns,N

cross
s )

∑
j=1

Jk+ j(t̂
unload,∗
s,k+ j )+ λpen(Ns−Ncross

s )

where

• Ncross
s is the number of DCVs that actually cross junction Ss during the prediction

period;
• t̂unload,∗

s,k+ j is the predicted unloading time instant of bag bs,k+ j;
• λ pen is a nonnegative weighting parameter;
• ts(k) = [t load

s,k+1 . . . t load
s,k+Ns

t̂unload,∗
s,k+1 . . . t̂unload,∗

s,k+Ns
]T with t load

s,k+ j the loading time instant
of bag bs,k+ j

The second term λ pen(Ns −Ncross
s ) of the local objective function is included for

the following reasoning. Assume that, at step k, there are no DCVs traveling on the
incoming link l ∈ {0,1} of junction Ss, while some DCVs travel on link 1− l. If this
term were not considered, then JDistr MPC

s,k,Ns
(t) would be minimal when the switch-in

is positioned on link l during the prediction period. However, this is obviously not a
good solution when the endpoints are open.

The MPC optimization problem at junction Ss for bag k is then defined as fol-
lows:

min
us(k)

JDistr MPC
s,k,Ns

(ts(k))

subject to ts(k) =Mlocal,switch ctrl
(
T ,xs(tcross

s,k ),us(k)
)
,

C(ts(k))≤ 0

with Ns given by (16.4).
Note that in this approachMlocal,switch ctrl

(
T ,xs(tcross

s,k ),us(k)
)

describes the local
dynamics of junction Ss with its incoming and outgoing links and additional data
from neighboring junctions (if any).

After computing the optimal control, only usw in
s (k+1) and usw out

s (k+1) are ap-
plied. Next, the state of the system is updated. At bag step k+1, a new optimization
will be then solved over the next Ns bags.

Every time some bag has crossed some junction we update the local control of
junctions in the network as follows: Assume that some bag has just crossed junction
Ss, which has assigned level κd. Then, we update the control as follows. We consider
a subtree rooted at Ss and consisting of nodes of subsequent levels of influence that
are connected via a link to nodes already present in the subtree. So, only the control
of the switch-in and switch-out of the junctions in this subtree have to be updated.
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16.4.2.3 Distributed MPC with a Single Round of Communication

In order to further improve the performance of the distributed control approach pre-
sented above, we now add an extra round of communication and consider distributed
MPC with one round of downstream and upstream communication.

So, every time a bag has crossed a junction we compute the local control se-
quences according to the downstream levels of influence, as explained above. Then
for the junctions on level 1 of upstream influence we update the release rate of their
incoming links as follows: We take as example junction Ss with κu = 1. For all
other junctions we will apply the same procedure. We virtually apply at Ss the opti-
mal control sequence u∗

s that we have computed when optimizing in the downstream
direction. Let t last,∗

s be the time instant at which the last bag crossed Ss (out of all
the bags over which we make the prediction for Ss). Let τrate be the length of the
time window over which we compute the link release rate. The variable τrate can be
derived using empirical data. Then, if

t last,∗
s < t0 + τrate

we set ζ s,l = ζ max for l = 0,1 with ζ max the maximum number of DCVs per time
unit that can cross a junction using maximum speed. Otherwise, if nrate

s,l > 0 with
nrate

s,l the number of DCVs that left the outgoing link l of Ss within the time window

[t last,∗
s − τrate,t last,∗

s ), we set

ζ s,l =
nrate

s,l

τ rate

Finally, if nrate
s,l = 0 we set ζ s,l = ε with 0 < ε ≪ 1. Now we solve the local MPC

problem presented in Sec. 16.4.2.2 using the updated release rates and we compute
the local control of all junctions at upstream level κu + 1. Recursively, we compute
the local control until reaching level Kupstream, where Kupstream is the largest level of
upstream influence assigned in the network.

By also performing the upstream round of communication, more information
about the future congestion is provided via the updated release rate. This informa-
tion might change the initial intended control actions of each junction. Typically (if
one allows sufficient time to compute the solution of each local optimization prob-
lem), this new variant of distributed MPC increases the performance of the system,
but also the computational effort increases, since we deal with one more round of
optimizations.

16.4.3 Hierarchical MPC

In order to efficiently compute the route of each DCV we propose a hierarchical
control framework that consists of a multilevel control structure; see Fig. 16.5. The
layers of the framework can be characterized as follows:
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Fig. 16.5 Hierarchical control for DCV-based baggage handling systems.

• The network controller considers flows of DCVs instead of individual DCVs.
Moreover, the network controller determines reference DCV flow trajectories
over time for each link in the network. These flow trajectories are computed so
that the performance of the DCV-based baggage handling system is optimized.
Then the optimal reference flow trajectories are communicated to switch con-
trollers.

• The switch controller present in each junction receives the information sent by
the network controller and determines the sequence of optimal positions for its
ingoing and outgoing switches at each time step so that the tracking error between
the reference flow trajectory and the actual flow trajectory is minimal.

• The DCV controller present in each vehicle detects the speed and position of the
vehicle in front of it, if any, and the position of the switch into the junction the
DCV travels towards to. This information is then used to determine the speed to
be used next such that no collision will occur and such that the DCV stops in
front of a junction, the switch of which is not positioned on the link on which the
DCV travels.

The lower levels in this hierarchy deal with faster time scales (typically in the mil-
liseconds range for the DCV controllers up to the seconds range for the switch
controllers), whereas for the higher-level layer (network controller) the frequency
of updating is up to the minutes range.

16.4.3.1 Route Control

We now focus on the network controller. In Sec. 16.5 it will be shown that when
each DCV is considered individually, the predictive switch control problem in DCV-
based baggage handling systems results in a huge nonlinear integer optimization
problem with high computational complexity and requirements, making the prob-
lem in fact intractable in practice. So, since considering each individual DCV is too
computationally intensive we will now consider streams of DCVs instead (charac-
terized by real-valued demands and flows expressed in vehicles per second). In this
chapter the routing problem will then be recast as the problem of determining flows
on each link. Once these flows are determined, they can be implemented by switch
controllers at the junctions. So, the network controller provides flow targets to the
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Fig. 16.6 Piecewise constant demand profile Do,d .

switch controllers, which then have to control the position of the switch into and out
of each junction in such a way that these targets are met as well as possible. This
corresponds to blocking flows before a junction whenever necessary and possible,
and routing the DCVs towards the outgoing links.

In the literature one can find extensive work addressing the flow-over-time prob-
lem; see e.g., [7]. However, in this chapter we propose a nonstandard, but efficient
approach to model the flows of DCVs as presented next.

Set-up

We consider the following set-up. We have a transportation network with a set of
origin nodesO consisting of the loading stations, a set of destination nodes D con-
sisting of the unloading stations and a set of internal nodes I consisting of all the
junctions in the network. We define the set of all nodes as V =O∪I∪D. The nodes
are connected by unidirectional links. Let L denote the set of all links.

Furthermore, let the time instant tk be defined as

tk = t0 + kτnc

with t0 that time when we start the simulation and τnc the sampling time for the
network controller. Then, for each pair (o,d) ∈ O×D, there is a dynamic, piece-
wise constant demand pattern Do,d(·) as shown in Fig. 16.6, with Do,d(k) the
demand of bags at origin o with destination d in the time interval [tk,tk+1) for
k = 0,1, . . . ,Ksim−1 with Ksim the simulation horizon (we assume that beyond tKsim

the demand is zero).
Next, let Ld be the set of links that belong to some route going to destination d,

Ld ⊆ L. We denote the set of incoming links for node v ∈ V by Lin
v , and the set of

outgoing links of v by Lout
v . Note that for origins o ∈ O we have Lin

o = ∅ and for
destinations d ∈ D we have Lout

d = ∅. Also, assume each origin node to have only
one outgoing link and each destination node to have only one incoming link.4 Then
|Lout

o | = 1 and |Lin
d |= 1.

4 If a loading station has more than one outgoing link, then one can virtually expand that loading
station into a loading station connected via a link of length zero to a junction with two outgoing
links; similarly, one can virtually expand an unloading station with more than one incoming link.
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Next, for each destination d ∈D and for each link ℓ ∈ Ld in the network we will
define a real-valued flow uℓ,d(k). The flow uℓ,d(k) denotes the number of DCVs per
time unit traveling towards destination d that enter link ℓ during the time interval
[tk,tk+1).

The aim is now to compute using MPC, for each time step k, flows uℓ,d(k) for
every destination d ∈D and for every link ℓ ∈ Ld in such a way that the capacity of
the links is not exceeded and such that the performance criterion is minimized over
a given prediction period [tk,tk+N). Later on we will write a model of the baggage
handling system to be used by the network controller, and show that this model can
be rewritten as an MILP model. Therefore, in order to obtain an MILP optimiza-
tion problem one has to define a linear or piecewise affine performance criterion.
Possible goals for the network controller that allow linear or piecewise affine per-
formance criteria are reaching a desired outflow at destination d or minimizing the
lengths of the queue in the network.

Model

We now determine the model for the DCV flows through the network. Let τℓ denote
the free-flow travel time on link ℓ. Recall that the free-flow travel time of link ℓ rep-
resents the time period that a DCV requires to travel on link ℓ when using maximum
speed. In this subsection we assume the travel time τℓ to be an integer multiple of
τnc, say

τ ℓ = κℓτnc with κℓ an integer. (16.5)

In case the capacity of a loading station is less than the demand, queues might
appear at the origin of the network. Let qo,d(k) denote the length at time instant
tk of the partial queue of DCVs at origin o going to destination d. In principle, the
queue lengths should be integers as their unit is [number of vehicles], but we will
approximate them using reals.

For every origin node o ∈O and for every destination d ∈ D we now have

uℓ,d(k) 6 Do,d(k)+
qo,d(k)

τnc for ℓ ∈ Lout
o ∩Ld (16.6)

with Do,d(k) = 0 for k > K. Moreover,

qo,d(k + 1) = max

(
0, qo,d(k)+

(
Do,d(k)−∑ℓ ∈ Lout

o ∩Lduℓ,d(k)
)

τnc
)

(16.7)

However, queues can form also inside the network. We assume that the DCVs run
with maximum speed along the track segments and, if necessary, they wait in vertical
queues before crossing the junction. Let qv,d(k) denote the length at time instant tk
of the vertical queue at junction v∈ I, for DCVs going to destination d ∈D. Taking
into account that a flow on link ℓ has a delay of κℓ time steps before it reaches the
end of the link, for every internal node v ∈ I and for every d ∈ D we have
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Fout
v,d (k)6 F in

v,d(k)+
qv,d(k)

τnc (16.8)

where F in
v,d(k) is the flow into the queue at junction v, defined as

F in
v,d(k) = ∑ℓ ∈ Lin

v ∩Lduℓ,d(k−κℓ) (16.9)

and where Fout
v,d (k) is the flow out of the queue at junction v, defined as:

Fout
v,d (k) = ∑ℓ ∈ Lout

v ∩Lduℓ,d(k) . (16.10)

The evolution of the length of the queue for every internal node v ∈ I and for every
d ∈ D is given by

qv,d(k +1) = max
(

0,qv,d(k)+
(
F in

v,d(k)−Fout
v,d (k)

)
τnc
)

(16.11)

Moreover, for each origin o ∈ O and for each junction v ∈ I we have the following
constraints:

∑d ∈ Dqo,d(k +1)≤ qmax
o (16.12)

∑d ∈ Dqv,d(k +1)≤ qmax
v (16.13)

where qmax
o and qmax

v express respectively the maximum number of DCVs the con-
veyor belt transporting bags towards loading station o can accommodate and the
maximum number of DCVs the track segments of the incoming links of junction v
can accommodate.

We also have the following constraint for every link ℓ:

∑d ∈ Duℓ,d(k) 6 Umax
ℓ (16.14)

where Umax
ℓ is the maximum flow of DCVs that can enter link ℓ.

Then, at time step k, the model of the DCV flows through the network of tracks
describing (16.6)–(16.14) can be written as a system of equalities and a system of
inequalities as follows:

qk+1 =Meq(qk,uk)

Mineq(qk+1,uk)≤ 0

where

• qk is the vector consisting of all the queue lengths qo,d(k), for all o ∈ O and for
all d ∈ D, and of all the queue lengths qv,d(k), for all v ∈ I and for all d ∈ D;

• uk is the vector consisting of all the flows uℓ,d(k), for all d ∈D and for all ℓ∈Ld .
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tclose
d − τopen

d tclose
d

t

udesired
d

τnc

Fig. 16.7 Desired arrival profile at destination d.

Performance criterion

Next we define the performance to be used for computing the optimal routing at step
k for a prediction period of N time steps. The objective is to have each bag arriving
at its endpoint within a given time interval [tclose

d − τopen
d ,tclose

d ) where tclose
d is the

time instant when the endpoint d closes and τopen
d is the time period for which the

end point d stays open for a specific flight. We assume tclose
d and τopen

d to be integer
multiples of τs.

Hence, one MPC objective that allows a piecewise affine performance criterion
is achieving a desired flow at destination d during the prediction period. Let udesired

d
denote the desired piecewise constant flow profile at destination d as sketched in
Fig. 16.7, where the area under udesired

d equals the total number of bags out of the
total demand that have to be sent to destination d. Note that udesired

d (k) = 0 for all
k < kopen

d and all k≥ kclose
d with

kopen
d =

tclose
d − τopen

τnc and kclose
d =

tclose
d

τnc

Let κℓd = τℓd /τnc. Hence, one can define the following penalty for flow profiles
corresponding to destination d ∈D:

Jpen
d,k =

∣∣udesired
d (k)−uℓd,d(k + κℓd )

∣∣

where ℓd is the incoming link of destination d. Later on we will include the penalty
term

k+N−1−κℓd

∑
i=k

Jpen
d,i

into the MPC performance criterion for each destination d and for each time step k.
Note that we make the summation of these penalization indices only up to k +N−
1− κℓd , since for i > k + N− 1− κℓd the variable uℓd ,d(k + κℓd ) is not defined at
MPC step k.

Moreover, note that the use of
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k+N−1−κℓd

∑
i=k

Jpen
d,i

MPC performance criterion for each destination d and for each time step k could
have adverse effects for small prediction horizons. Therefore, to counteract these
effects we consider as additional controller goal, that of maximizing the flows of
all links that are not directly connected to unloading stations. To this aim, let τ link

ℓ,d,k

be the typical5 time required for a DCV that entered link ℓ in [tk,tk+1) to reach
destination d, with τ link

ℓ,d,k an integer multiple of τs. Also, let

κ l,d =
τ link

ℓ,d,k

τnc

Then, one can define the following penalty:

Jflow
ℓ,d,k =





uℓ,d(k), if kopen

d −κ l,d ≤ k < kclose
d −κ l,d

0, otherwise.

Later on this penalty will be used in the MPC performance criterion.
Next, in order to make sure that all the bags will be handled in finite time, we

also include in the MPC performance criterion the weighted length of queues at each
junction in the network, as presented next. Let τ junc

v,d be the typical6time required for

a DCV in the queue at junction v to reach destination d, with τ junc
v,d (k) an integer

multiple of τnc. Also, let κv,d = τ junc
v,d (k)/τnc. Then we define the new penalty:

Joverdue
v,d,k =





dmin
v,d qv,d(k), if k ≥ kclose

d −κv,d

0, otherwise

where dmin
v,d represents the length of the shortest route from junction v to destination

d. Note that Joverdue
v,d,k is nonzero only for steps that are larger than or equal to kclose

d −
κv,d . Moreover, for these steps Joverdue

v,d,k is proportional to dmin
v,d . The reason for this

is that we want to penalize more the queues at junctions that are further away from
destination d since the DCVs in those queues will need a longer time to travel to d.

Finally, let Ldest denote the set of links directly connected to unloading stations.
Then the MPC performance criterion is defined as follows:

5 These durations are determined based on historical data.
6 Ibid.

376 A.N. Tarău, B. De Schutter, and H. Hellendoorn

     irmgn.ir



Jk,N = ∑d ∈ D
( k+N−1−κℓd

∑
i=k

λ dJpen
d,i +β

k+N−1

∑
i=k

∑v ∈ IJoverdue
v,d,i

−α
k+N−1

∑
i=k

∑
ℓ∈(L\Ldest)∩Ld

Jflow
ℓ,d,i

)

with λ d > 0 a weight that expresses the importance of the flight assigned to desti-
nation d, α≪ 1 and β ≪ 1 nonnegative weighting parameters.

Then the nonlinear MPC optimization problem is defined as follows:

min
uk,...,uk+N−1,
qk+1,...,qk+N

Jk,N

subject to qk+1 =Meq(qk,uk)

...

qk+N =Meq(qk+N−1,uk+N−1)

Mineq(qk+1,uk)≤ 0

...

Mineq(qk+N ,uk+N−1)≤ 0

(16.15)

The nonlinear MPC optimization problem defined above is typically complex
and it requires large computational effort to solve. Therefore, in the next section
we will recast this problem into an MILP for which efficient and fast solvers are
available.

MILP optimization problem for the network controller

The general formulation of a mixed integer linear programming problem is:

min
x

cT x

subject to Aeqx = beq

Ax≤ b

xlow ≤ x≤ xup

xi is an integer, for each i ∈ I

(16.16)

where c, x, xlow, xup, beq and b are vectors, with xlow the lower bound for x and xup

the upper bound, and where Aeq and A are matrices (all these vectors and matrices
have appropriate size), and I ⊂ {1, . . . ,n}, where n is the number of variables.

Next we transform the dynamic optimal route choice problem presented above
into an MILP problem, for which efficient solvers have been developed [4]. To this
aim we use the following equivalences, see [2] where f is a function defined on a
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bounded set X with upper and lower bounds M and m for the function values, δ
is a binary variable, y is a real-valued scalar variable, and ε is a small tolerance
(typically the machine precision):

P1: [ f (x) 6 0] ⇐⇒ [δ = 1] is true if and only if
{

f (x) 6 M(1− δ)

f (x) > ε +(m− ε)δ ,

P2: y = δ f (x) is equivalent to






y 6 Mδ
y > mδ
y 6 f (x)−m(1−δ)

y > f (x)−M(1− δ) .

As an example, we will show how Eq. (16.7) of the nonlinear route choice model
presented in the previous section can be transformed into a system of linear equa-
tions and inequalities by introduction of some auxiliary variables. For the other
equations of the route choice model we apply a similar procedure.

We consider now (16.7). This is a nonlinear equation and thus it does not fit
the MILP framework. Therefore, we will first introduce the binary variables δ o,d(k)
such that

δ o,d(k) = 1 if and only if

qo,d(k)+
(

Do,d(k)−∑ l ∈ Lout
o ∩Lduℓ,d(k)

)
τnc 6 0 (16.17)

and rewrite (16.7) as follows:

qo,d(k +1) =(1− δo,d(k)) · (qo,d(k)+
(
Do,d(k)−∑ l ∈ Lout

o ∩Lduℓ,d(k)
)
τnc)

(16.18)

Condition (16.17) is equivalent to (cf. Property P1):
{

f (k) 6 (qmax
o +Dmax

o,d τnc)(1−δo,d(k))

f (k) > ε +(−Umaxτnc− ε)δ o,d(k) ,

where f (k) = qo,d(k)+
(
Do,d(k)−∑ l ∈ Lout

o ∩Lduℓ,d(k)
)
τnc, qmax

o is the maximal
queue length at origin o, and where Dmax

o,d = maxk Do,d(k) is the maximal demand
for origin-destination pair (o,d).

However, (16.18) is still nonlinear since it contains a multiplication of a binary
variable δ o,d(k) with a real-valued (linear) function. However, by using Property P2
this equation can be transformed into a system of linear inequalities.
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The rest of the model equations can be transformed, in a similar way, into a
system of MILP equations. Next we will transform the MPC performance criterion
into its MILP form.

The problem

min
k+N−1

∑
i=k

∑
d∈D

λ d

∣∣∣udesired
d (i)−uℓd,d(i+κℓd )

∣∣∣

can be written as:

min
k+N−1

∑
i=k

∑
d∈D

λ dudiff
d (i)

subject to udiff
d (i) > udesired

d (i)− uℓd,d(i+κℓd )

udiff
d (i) >−udesired

d (i)+ uℓd,d(i+κℓd )

for i = k, . . . ,k +N− 1

(16.19)

which is a linear programming problem.
If we add the MILP equations of the model, the nonlinear optimization problem

of Sec. 16.4.3.1 can be written as an MILP problem.
Several efficient branch-and-bound MILP solvers [4] are available for MILP

problems. Moreover, there exist several commercial and free solvers for MILP prob-
lems such as, e.g, CPLEX, Xpress-MP, GLPK, or lp solve; see [1] for an overview.
In principle—i.e., when the algorithm is not terminated prematurely due to time or
memory limitations—these algorithms guarantee we will find the global optimum.
This global optimization feature is not present in the other optimization methods
that can be used to solve the original nonlinear, nonconvex, nonsmooth optimiza-
tion problem. Moreover, if the computation time is limited (as is often the case in
on-line real-time control), then it might happen that the MILP solution can be found
within the allotted time whereas the global and multistart local optimization algo-
rithm still will not converge to a good solution (as will be illustrated in Sec. 16.5).

16.4.3.2 Switch Control

We now focus on the switch controller for the proposed hierarchy and on how opti-
mal switch positions can be determined.

Recall that at each control step k, the network controller provides optimal flows
for each link in the network and for each destination. Let these flows be denoted by
uopt

ℓ,d(k), . . . , uopt
ℓ,d(k+N−1), with d ∈D, ℓ ∈ L∩Ld and N the prediction horizon of

the network controller. Then the switch controller of each junction has to compute
optimal switch-in and switch-out positions such that the tracking error between the
reference optimal flow trajectory and the flow trajectory obtained by the switch
controller is minimal for each network controller time step k = 0, . . . ,Ksim.

Recall that the optimal flows
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uopt
ℓ,d(k), . . . ,uopt

ℓ,d(k +N− 1)

are determined for the time window [tk,tk+N) with tk = t0 + kτnc. In order to deter-
mine the switch control action during the time window [tk,tk+N) we will now again
use MPC. Next we will refer to one junction v ∈ I only. For all other junctions, the
switch control actions are determined similarly.

Let τ sc be the switch controller sampling7 time. Also, let ksc be an integer that
expresses the number of switch control actions determined until now. At tk, ksc is
defined as ksc = τnc/τsck. Then, let tsw

ksc denote the time instant corresponding to the
time step ksc of the switch controller, tsw

ksc = t0 + kscτ sc with t0 the time instant when
we start the simulation.

Furthermore, let sin
v (ksc) denote the position of the switch-in at junction v during

the time interval
[
tsw
ksc ,tsw

ksc+1

)
and let sout

v (ksc) denote the position of the switch-out
at junction v during

[
tsw
ksc ,tsw

ksc+1

)
.

We want to determine the switch control sequence during the time window
[tk,tk+N) while using MPC with a prediction period of Nsc steps. Hence, at each
MPC step ksc, the switch controller solves the following optimization problem:

min
sv,ksc,Nsc

Jsw
v,ksc ,Nsc (16.20)

with sv,ksc ,Nsc = [sin
v (ksc) · · · sin

v (ksc +Nsc−1) · · · sout
v (ksc) · · · sout

v (ksc +Nsc−1)]T if
junction v has two incoming and two outgoing links and with sv,ksc ,Nsc containing
only switch-in or only switch-out positions if junction v has only one outgoing or
only 1 incoming link, respectively, and where the local MPC performance criterion
Jsw

v,ksc ,Nsc is defined as:

Jsw
v,ksc,Nsc = ∑

ℓ∈Lout
v

∣∣∣Xopt
ℓ,k,ksc,Nsc(u

opt
ℓ )−Xℓ,ksc,Nsc(sv,ksc ,Nsc )

∣∣∣

+ γ
(
nsw in

ksc,Nsc (sv,ksc ,Nsc )+ nsw out
ksc,Nsc(sv,ksc ,Nsc)

)

where

• Xopt
ℓ,k,ksc,Nsc (u

opt
ℓ ) denotes the optimal number of DCVs to enter the outgoing link

ℓ of junction v during the period
[
tsw
ksc ,tsw

ksc+Nsc−1

)
, where uopt

ℓ is the vector con-
sisting of all the flows

uopt
ℓ,d(k), . . . ,uopt

ℓ,d(k + N) with d ∈ D and ℓ ∈ L∩Ld

The variable Xopt
ℓ,k,ksc,Nsc (u

opt
ℓ ) is derived later on (see (16.22)).

• Xℓ,ksc,Nsc(sv,ksc ,Nsc) is the actual number of DCVs entering link ℓ during the pre-
diction period. The variable Xℓ,ksc,Nsc is determined via simulation for a nonlinear
(event-based) model similar to the one used in the distributed MPC approach of

7 We select the sampling time τnc of the network controller and the sampling time τ sc of the switch
controller such that τnc is an integer multiple of τsc.
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tk tk+1 tk+2 tk+pksc −1 tk+pksc

τ left
1,ksc (p−2)τ nc τ left

2,ksc

tsw
ksc tsw

ksc+Nsc−1

Fig. 16.8 Prediction window
[
tsw
ksc , tsw

ksc+Nsc−1

)
over which we solve the MPC optimization problem

(16.20) illustrated with respect to the window [tk, tk+pksc ) for pksc > 2.

Sec. 16.4.2 (the difference is that now the switch positions sv,ksc ,Nsc are given for
each period [tsw

ksc ,tsw
ksc+1), . . . , [tsw

ksc+Nsc−1,t
sw
ksc+Nsc) instead of for each of the next

Ns DCVs to cross a junction).
• nsw in

ksc,Nsc (sv,ksc ,Nsc) and nsw out
ksc,Nsc (sv,ksc ,Nsc) represent the number of toggles of the

switch-in and of the switch-out respectively during the time period
[
tsw
ksc ,tsw

ksc+Nsc

)

that are obtained from the simulation.
• γ is a nonnegative weighting parameter.

Next, we derive the variable Xopt
ℓ,k,ksc,Nsc (u

opt
ℓ ). To this aim, we first determine how

many steps pksc of the network controller will be involved in solving (16.20), as
follows:

pksc =
⌈Nscτsc

τnc

⌉

where ⌈x⌉ denotes the smallest integer larger than or equal to x (so, pksc ≥ 1). Fur-
thermore, note that the index k of the time instant tk for which tk ≤ tsw

ksc < tk+1 can be
computed as follows:

k =
⌊kscτ sc

τnc

⌋

where ⌊x⌋ denotes the largest integer less than or equal to x. Figure 16.8 illustrates
the prediction window

[
tsw
ksc ,tsw

ksc+Nsc−1

)
with respect to the window [tk,tk+pksc ). The

variable Xopt
ℓ,k,ksc(u

opt
ℓ ) is given by:

Xopt
ℓ,k,ksc,Nsc (u

opt
ℓ ) = τ left

1,ksc ∑
d∈D

uopt
ℓ,d(k)+ τnc

k+pksc −2

∑
i=k+1

∑
d∈D

uopt
ℓ,d(i) (16.21)

+τ left
2,ksc ∑

d∈D
uopt

ℓ,d(k + pksc− 1) (16.22)

where ∑k+ j
i=k+1 x(i) = 0 by definition for j < 1 and where

τ left
1,ksc = min(tk+1,t

sw
ksc+Nsc−1)− tsw

ksc

τ left
2,ksc =

{
tsw
ksc+Nsc−1− tk+pksc−1 if pksc > 1

0 otherwise.
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Fig. 16.9 Case study for a DCV-based baggage handling system.

16.5 Simulation Results

In this subsection we compare the performance of the centralized, distributed, and
hierarchical MPC based on a simulation example.

Set-up

We consider the network of tracks depicted in Fig. 16.9 with four loading stations,
two unloading station, nine junctions, and twenty unidirectional links. Note that this
network allows more than four possible routes to each destination from any origin
point (e.g., U1 can be reached from L1 via junctions S1,S4,S8; S1,S4,S8, S9, S8; S1,
S2, S5, S4,S8; S1,S2,S5,S6,S5, S4,S8; S1,S2,S6,S7,S9,S8, and so on). We consider
this network because on the one hand it is simple, allowing an intuitive understand-
ing of and insight to the operation of the system and the results of the control8, and
because on the other hand, it also contains all the relevant elements of a real set-up.
We assume that the velocity of each DCV varies between 0 m/s and vmax = 20 m/s,
and that the minimum time period after we allow a switch toggle is τ switch = 2 s.
The lengths of the track segments are indicated in Fig. 16.9.

In order to more rapidly assess the efficiency of our control method we assume
that we do not start with an empty network but with a network already populated by
DCVs transporting bags.

We consider 6 typical scenarios where 2400 bags will be loaded into the bag-
gage handling system (600 bags arrive at each loading station in the time interval

8 The proposed control approaches allow the choice of routes containing loops.
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Table 16.1 Comparison of average performance of the system and total computation time

Control approach Japproach,avg(s) Total CPU time (s)

Centralized MPC 1.13 · 106 1.95 ·105

Distributed MPC downstream communication 2.27 · 107 3.90 ·104

Distributed MPC communication back & forth 1.90 · 107 1.46 ·105

Hierarchical MPC 1.98 · 105 1.06 ·102

[t0,t0 +100s)). These scenarios include different classes of demand profiles for each
loading station, different initial states of the system, queues on different links and
different time criticality measures (e.g., cases where the transportation of the bags
is very tight, i.e., the last bag that enters the system can only arrive in time at the
corresponding end point if the shortest path is used and its DCV is continuously
running with maximum speed, or cases where the timing is more relaxed).

16.5.1 Discussion

In order to solve the nonlinear, nonsmooth MPC optimization problem, one may use
specialized search algorithms [5, 6] such as sequential quadratic programming al-
gorithms, pattern search, genetic algorithms, and so on. We have chosen the genetic
algorithm ga of the MATLAB optimization toolbox Genetic Algorithm and Direct
Search with multiple runs and “bitstring” population, since simulations show that
this optimization technique gives good performance with the shortest computation
time.

Based on simulations we now compare, for the given scenarios, the proposed
control methods. For all the proposed predictive control methods we set the horizon
to N = 5 bags. We make this choice since for a larger horizon, the computation
time required to obtain a good solution of the local optimization problem increases
substantially. Hence, using larger horizons for the considered MPC optimization
problems yields a considerably larger total computation time.

Let Jtot,approach
j denote the performance of the baggage handling system corre-

sponding to scenario index j and the considered control approach. Moreover, let
Japproach,avg denote the average performance

Japproach,avg =
1
|∆ | ∑

j∈∆
Jtot,approach

j

with ∆ the set of considered scenarios. Then in Table 16.1 we list the average results.

Theoretically, the performance of the baggage handling system obtained when
the centralized predictive switch control is used is better than when the hierarchi-
cal approach is used. However, to obtain the true performance of centralized MPC
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would require extremely high computational time; see e.g., [13] where the CPU time
is over 2 hours for routing 25 bags (on a network with only 2 junctions) when using a
prediction horizon N = 2. Hence, to obtain the true optimum with centralized MPC
requires a too high computational burden—centralized control becomes intractable
in practice when the number of junctions is large due to the high computation time
required. Therefore, we need to limit the computation time. In these simulations, in
order to reduce the computational effort of the route choice control using centralized
MPC, we ran the genetic algorithm four times for each optimization problem, while
limiting the time allowed to compute a solution to 400 s.

The simulation results indicate that distributed MPC gives worse performance
than centralized MPC. But this happens due to the time limitations that we have
imposed when solving the nonlinear optimization problems. Note that when us-
ing distributed MPC we ran the genetic algorithm once for each local optimization
problem, while allowing a maximum of three generations of population. We have
chosen these options in order to have a balance between the overall performance
and the total computation time.

Regarding the hierarchical control approach we note that we have set the con-
trol time step for the network controller to 60 s, and the control time step for the
switch controller was set to 2 s. The simulation results indicate that using the hier-
archical control framework yields a better system performance than using the other
predictive methods. But, recall that the solutions of centralized or distributed MPC
were returned by the prematurely terminated global and multistart local optimiza-
tion method. However, even with the computational restrictions mentioned above
(we allow a limited amount of time for solving an optimization problem), the total
computation time of centralized MPC and of distributed MPC with a single round of
downstream and upstream communication is much larger than (over 40 hours) the
one of the hierarchical control (an average of 100 s per junction, plus 6 s for solving
the MILP optimization problems).

Hence, the advantage of using hierarchical MPC is clear: much better perfor-
mance and much lower computational effort. To compute centralized or distributed
MPC solutions in a more precise way one should route only a few bags on a very
simple network. But then all approaches show the same performance; the only ad-
vantage of using the hierarchical framework is the low computation time.

16.6 Summary

We considered the baggage handling process in large airports using destination
coded vehicles (DCVs) running at high speeds on a network of tracks. Then, for
a DCV-based baggage handling system, we developed and compared efficient con-
trol methods to determine the optimal DCV routing. In particular, we developed and
compared centralized, distributed and hierarchical predictive methods to control the
DCV routing.
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In practice, centralized model predictive control (MPC) is not suitable for de-
termining the optimal DCV routing due to the high computation time required to
solve the route choice optimization problem. The simulation results indicate that
distributed MPC yields a worse performance than centralized MPC when hard com-
putational restrictions are imposed in solving the nonlinear optimizations. Simu-
lation results also indicate that the hierarchical control with MILP flow solutions
outperforms the other predictive control approaches, where the multistart local op-
timization method has been terminated prematurely.

In future work we will perform extensive simulations in order to assess the ef-
ficiency of these control approaches. Moreover, we will further improve the per-
formance of the distributed MPC by considering multiple up and down rounds of
optimizations and by extending the range of communication exchange to more than
one level. Also, in order to account for the increased computation and communica-
tion time of such an approach, we will extend the local control area to more than
one node and assess the efficiency and the balance between performance and com-
putation and communication requirements of such an alternative approach.
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Chapter 17
Stability with Uniform Bounds for On-line
Dial-a-Ride Problems under Reasonable Load

Sven Oliver Krumke and Jörg Rambau

Abstract In continuously running logistic systems (like in-house pallet transporta-
tion systems), finite buffer capacities usually require controls that can achieve uni-
formly bounded waiting queues (strong stability). Standard stochastic traffic as-
sumptions (arrival rates below service rates) cannot, in general, guarantee these
strong stability requirements, no matter which control policy is used. So, the worst-
case traffic notion of reasonable load was introduced, originally for the analysis of
the on-line dial-a-ride Problem. A set of requests is reasonable if the requests that
are presented in a sufficiently large time period can be served in a time period of
at most the same length. The rationale behind this concept is that the occurrence of
nonreasonable request sets renders the system overloaded, requiring capacity be ex-
tended. For reasonable load, there are control policies that can guarantee uniformly
bounded flow times, leading to strong stability in many cases. Control policies based
on naı̈ve reoptimization, however, can in general achieve neither bounded flow times
nor strong stability. In this chapter, we review the concept and examples for reason-
able load. Moreover, we present new control policies achieving strong stability as
well as new elementary examples of request sets where naı̈ve reoptimization fails.

17.1 Introduction

Consider a distribution center with various floors, connected to a warehouse for
standard pallets. Pallets are moving horizontally along conveyor belts and vertically
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Fig. 17.1 Pallet elevators at the distribution center of Herlitz with a single waiting slot in front of
each

in elevators. (One such system can be found in a distribution center of Herlitz, for
office supplies, in Falkensee near Berlin.) By design of the microcontrol, a pallet
can only move forward on a conveyor belt, if there is enough space in front of it.
A section of a conveyor belt completely filled with pallets causes a complete stand-
still of that belt. In such an event, pallets have to be removed manually in order to
resume transportation.

For example, if pallets requesting an elevator stay too long in the subsystem
available for waiting pallets, that subsystem will cease to work. Thus, the goal is to
control an elevator in such a way that the waiting slot capacities are never exceeded.
The number of pallets in such waiting slots can be minimized if the average flow
times (also called sojourn times) of the pallets waiting for an elevator are minimized.
Another requirement is that the flow time of an individual pallet not be arbitrarily
large (infinite deferment), since such a forgotten pallet can hold back the delivery
of a large order. Figure 17.1 shows the single waiting slots in front of some pallet
elevators in the Herlitz distribution center.

There are several mathematical theories that suggest a framework for the anal-
ysis of this system. Queuing theory [10] captures particularly well average entities
in the steady state of such a system. It utilizes stochastic information on the input
stream of requests. However, it is extremely difficult to derive nontrivial control
policies from it, since policies are usually an input and not an output of the compu-
tations. Stochastic dynamic programming in Markov decision processes [19] is, in
principle, suitable for finding a control policy for stochastic inputs that is optimal
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in expectation, but in this case the curse of dimensionality renders a direct appli-
cation impossible. For example, an elevator system with one elevator of capacity
one and with n floors containing w waiting slots each requires a state space of at
least nnw+1 states. For one waiting slot on each of eight floors—as can be found
at Herlitz—this means more than 134 million states, and this does not yet include
state information on already accumulated waiting times in the system. Approximate
dynamic programming [5, 6] yields policies that are reported to perform well in
experiments, but performance guarantees cannot be given.

An interest in worst-case results rather than expected performance measures trig-
gered the concept of competitive analysis [4]: The worst case results computed by
min-max dynamic programming are often meaningless because in the worst-case
all policies are equally and maximally bad; see, for example, the famous paging
problem [4, 7], where, obviously, each paging policy may have page fault at ev-
ery page request. To present a principal solution to this dilemma, the more game-
theoretic competitive analysis was developed [4, 7] and gave rise to the area of
on-line optimization in algorithmic theory. In on-line optimization, an on-line algo-
rithm is presented a sequence of requests. The on-line algorithm has to answer the
requests in such a way that an answer at any point in time is a function of all requests
and answers given up to that time; i.e., the on-line algorithm has no clairvoyance.
In competitive analysis, the cost of an on-line algorithm on a particular request
sequence is compared to the cost of an optimal off-line algorithm on the same re-
quest sequence. In contrast to the on-line algorithm, the optimal off-line algorithm is
clairvoyant, i.e., it knows the whole sequence in advance and computes an optimal
sequence of answers. Both the online- and offline-algorithm are assumed to have
unlimited computing power. This way, the performance difference between online-
and offline-algorithm is caused only by the different amounts of information they
can use: the offline-algorithm has complete information, the online-algorithm has
no information about future requests. The supremum of the cost ratios over all re-
quest sequences is the competitiveness of the on-line algorithm. The infimum of the
competitivenesses over all on-line algorithms is the competitiveness of the on-line
problem.

However, for many practical problems, the so-called triviality barrier is met: All
on-line algorithms are equally bad if compared to an optimal off-line algorithm.
This is, unfortunately, also the case in our application: the competitiveness of our
problem is infinite. The reason for this is simple: There are arbitrarily long request
sequences for which the optimal off-line algorithm can always be at the floor exactly
when a new request arrives (i.e., no waiting time), whereas this is impossible for any
on-line algorithm (i.e., positive waiting time). Thus, the cost ratio depends on the
request sequence, i.e., there is no uniform bound.

Recent progress has been made using stochastic dominance as a means for per-
formance comparison of on-line algorithms [14]. The statement that one algorithm
stochastically dominates another has far-reaching consequences. For many interest-
ing pairs of algorithms, a stochastic-dominance relation does not hold or is very
difficult to prove. Thus, the problems that can be tackled by this approach so far are
quite elementary.
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Despite these difficulties in the theoretical analysis, experience shows of so-
called replan algorithms in on-line optimization perform satisfactorily. These are
on-line algorithms that resemble the paradigm of a receding-horizon in model pre-
dictive control (MPC); in a closed loop, a control that is computed as the optimum
open-loop control over some finite horizon is used. The development of the system
is estimated on the basis of a model of the system behavior and assumptions on
the possible future inputs and/or disturbances. Since future requests in on-line opti-
mization are completely unknown and no deterministic prediction is likely enough
to become true, replan algorithms in on-line optimization usually perform their com-
putations with no future requests at all. The model prediction then restricts itself to
the forecast of future events, when the schedule is carried out with no new requests
arriving. We assume in this chapter that this part of the prediction is exact.

In our application the structure of a generic replan algorithm is informally de-
scribed as follows. At a particular point in time, we consider only pallets known to
the system (a system snapshot). We then compute an open-loop scheduling that is
optimal with respect to carefully engineered constraints and a carefully engineered
objective function (the snapshot problem). This scheduling is “used” until a new
request enters the system. The new request then triggers a new optimization compu-
tation. What does it mean to “use” a schedule? In order to interpret a policy utilizing
precomputed schedules as a control policy for the elementary elevator movements,
the schedules need to be translated in sequences of microscopic controls like “go
up/down one floor”, “halt at current floor”, “let pallet enter/exit”. Although in the
on-line optimization community this transformation of schedules and routings into
low level controls is rarely mentioned explicitly, there are more detailed descrip-
tions of this process in the MPC literature [22]. We call the resulting control policy
a replan policy. Since we are assuming that carrying out a schedule happens with
no disturbances, this transition is straightforward and is not made explicit in the
following. So, the terms “policy” and “on-line algorithm” can be understood inter-
changeably in the following.

The arguably most straightforward replan policy is what we call naı̈ve reopti-
mization. It assumes that there is a so-called associated off-line version of the prob-
lem. This is an off-line optimization problem that describes the best possible opera-
tion of the system given all inputs throughout an evaluation period. Such an evalua-
tion period may be one day for the elevator system in our application. The off-line
version should have the property that an optimal solution to it corresponds to a best
possible control of the system when the inputs are exactly as predicted. The (non-
implementable) policy given by a solution to the off-line version with precisely the
actual future requests can be interpreted as a policy used by a clairvoyant controller
that optimizes controls under exact predictions of the future on the whole evaluation
period. Naı̈ve reoptimization is the (implementable) policy that uses the same con-
straints and objective as the off-line version does; the inputs, however, are restricted
to all currently known inputs. Such a policy is optimal when no further inputs occur.
In our case, when no additional requests arrive. Note, that on the controller level this
policy still uses nontrivial predictions because carrying out a schedule through all
known requests usually takes many stages of low level controls.

390 S.O. Krumke and J. Rambau

     irmgn.ir



In order to utilize sensible stochastic forecasts about incoming requests, all replan
policies can in principle be enhanced by incorporating a probability distribution over
a limited number of future requests. This, however, leads to extremely hard to solve
stochastic optimization models in the snapshot problems, and we know of no real-
world example where this stochastic replan technique has been applied.

More common is the addition of further constraints or penalty terms in the ob-
jective function to the snapshot problem of naı̈ve reoptimization. These constraints
and penalties represent a mostly heuristic safeguard against unwanted system states
that are not ruled-out by the off-line optimization model on known requests. One
example is the common technique of using an average squared waiting time in the
objective of the snapshot problem instead of an average waiting time [18, 16]. The
goal of this is to balance the desire for individually not too large waiting times (fair-
ness) with small average waiting times (performance). The main problem with this
engineering approach is that in many cases nothing can be proved about the perfor-
mance of the resulting replan policy.

Our application is an instance of the so-called on-Line dial-a-ride problem. For
the sake of an easier exposition, we restrict ourselves to the special case of a sin-
gle server of capacity one. In our application, this means that want to control an
idealized elevator of capacity one with one waiting queue of infinite capacity.

We show the following for such a system: The combination of ideas from on-
line optimization, model predictive control and queuing theory yields experimen-
tally and theoretically reliable control policies for these elevator systems. These
stable policies are not defined as REPLAN-policies: our policies ignore some open-
loop solutions and keep the solutions computed earlier. The theoretical performance
guarantees are dependent on a bound on the combinatorial load in the system—the
reasonability of the input stream. As we go along, we put known results into context
and present some so far unpublished results.

The chapter is structured as follows: Section 17.2 formally defines the prob-
lem under consideration. In Sec. 17.3 we define some on-line algorithms for the
OLDARP, followed by some known performance results in Sec. 17.4. Our original
contribution beyond these results is outlined in Sec. 17.5. The core concept dealt
with in this chapter is introduced formally in Sec. 17.6, before we suggest the notion
of strong stability in Sec. 17.7. Sections 17.8 and 17.9 present performance guar-
antees under reasonable load for two competitive algorithms, IGNORE and SMART-
START, respectively. Sections 17.10 and 17.11 show that such performance guaran-
tees do not exist for the seemingly more natural competitive algorithms REPLAN and
AVGFLOWREPLAN. The analysis for the new algorithm DELTAREPLAN is carried
out in Sec. 17.12. Section 17.13 concludes the chapter and offers possible further
directions.
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17.2 Formal Problem Statement

After the informal introduction let us define the problem under consideration more
precisely. We are given a metric space (X ,d) with a special vertex o ∈ X (the origin)
in which a server of capacity C ∈ R≥0∪{∞} moves at unit speed in order to serve
transportation requests. Requests are triples r = (t,a,b), where a is the start point
of a transportation task, b its endpoint, and t its release time, which is—in this
context—the time where r becomes known. If r is a request, we also use t(r) for its
release time and a(r) and b(r) for its start and endpoint, respectively.

A transportation move is a quadruple m = (τ,x,y,R), where a is the starting
point and b the endpoint and τ the starting time, while R is the set (possibly empty)
of requests carried by the move. The arrival time of a move is the sum of its starting
time τ and d(x,y). A (closed) transportation schedule for a sequence σ of requests
is a sequence

S = (τ1,x1,y1,R1),(τ2,x2,y2,R2), . . . ,(τℓ,xℓ,yℓ,Rℓ)

of transportation moves with the following properties:

(i) The (i+1)st move starts at the endpoint of the ith move and not earlier than the
time that the ith move is completed; that is, xi+1 = yi and τ i+1 ≥ τ i + d(xi,yi)
for all i.

(ii) Each move carries at most C requests, that is, |Ri| ≤C for all i.
(iii) For any request r ∈ σ , the subsequence of S consisting of those moves

(τ i,xi,yi,Ri) with r ∈ Ri is a contiguous nonempty subsequence

S(r) = (τ l ,xl ,yl,Rl), . . . ,(τ l+p,xl+p,yl+p,Rl+p)

of S which forms a transportation from a(r) to b(r), that is, xl = a(r) and
yl+p = b(r). The subtransportation S(r) does not start before r is released, that
is, τ l ≥ t(r).

(iv) The first move starts in the origin o and the last move ends in the origin o.

The time τ1 and the point x1 ∈ X are called the starting time and the starting point
of S. Similarly, the time τℓ +d(xℓ,yℓ) and the point yℓ are referred to as the end time
and the endpoint of S.

An on-line algorithm for OLDARP has to move a server in X so as to fulfill
all released transportation tasks without preemption (i.e., once an object has been
picked up it is not allowed to be dropped at any other place than its destination; see
Condition (ii) above), while it does not know about requests that are presented in the
future. In order to plan the work of the server, the on-line algorithm may maintain
a preliminary (closed) transportation schedule for all known requests, according to
which it moves the server.

A posteriori, the moves of the server induce a complete transportation schedule
that may be compared to an off-line transportation schedule that is optimal with
respect to some objective function. This is the core of competitive analysis of on-
line algorithms.
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An on-line algorithm A is called c-competitive if there exists a constant c such
that for any finite request sequence σ the inequality A(σ )≤ c ·OPT(σ ) holds. Here,
X(σ) denotes the objective function value of the solution produced by algorithm
X on input σ and OPT denotes an optimal off-line algorithm. Sometimes we are
dealing with various objectives at the same time. We then indicate the objective obj
in the superscript, as in Xobj(σ).

For a detailed set-up that focusses on competitive analysis see [1, 17].

17.3 Known On-line Algorithms

Several on-line algorithms have been suggested in the literature so far. We discuss
REPLAN, IGNORE, and SMARTSTART because our stability results refer to them.
All these algorithms stem from [1]. The algorithm REPLAN is based on ideas in [3];
the algorithm IGNORE appears in [21] in a more general context. The algorithms
can be considered as typical representatives of construction principles for on-line
algorithms: REPLAN reoptimizes whenever a new request arrives, IGNORE reop-
timizes only when it becomes idle, whereafter it immediately continues to work,
SMARTSTART reoptimizes only when idle and stays idle deliberately for a certain
amount of time to gather more information about unserved requests.

The on-line algorithm REPLAN for the OLDARP is based on the general idea of
a replan algorithm in the introduction in Sec. 17.1.

Definition 17.1 (Algorithm REPLAN). Whenever a new request becomes available,
REPLAN computes a preliminary transportation schedule for the set R of all available
requests by solving the problem of minimizing the total completion time of R. Then
it moves the server according to that schedule until a new request arrives or the
schedule is done.

The on-line algorithm IGNORE makes full use of every schedule it computes
before it recomputes a new schedule.

Definition 17.2 (Algorithm IGNORE). Algorithm IGNORE works with an internal
buffer. It may assume the following states (initially it is IDLE):

IDLE Wait for the next point in time when requests become available. Goto
PLAN.

BUSY While the current schedule is in work store the upcoming requests in a
buffer (“ignore them”). Goto IDLE if the buffer is empty else goto PLAN.

PLAN Produce a preliminary transportation schedule for all currently available
requests R (taken from the buffer) minimizing comp for R. (Note: This yields a
feasible transportation schedule for R because all requests in R are immediately
available.) Goto BUSY.

The algorithm SMARTSTART was developed to improve the competitive ratios
of REPLAN and IGNORE. The idea of this algorithm is basically to emulate the IG-
NORE algorithm but to make sure that each subtransportation schedule is completed
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“not too late”: if a subschedule would take “too long” to complete then the algorithm
waits for a specified amount of time. Intuitively this construction tries to avoid the
worst case situation for IGNORE, in which right after the algorithm starts a schedule
a new request becomes known.

In this section we use l(S) to denote the length of a schedule (tour) S computed
for a (sub)set of requests. SMARTSTART has a fixed “waiting scaling” parame-
ter θ > 1. From time to time the algorithm consults its “work-or-sleep” routine:
This subroutine computes an (approximately) shortest schedule S for all unserved
requests, starting and ending at the origin. If this schedule can be completed no
later than time θ t, i.e., if t + l(S) ≤ θ t, where t is the current time and l(S) de-
notes the length of the schedule S, the subroutine returns (S,work); otherwise it
returns (S,sleep).

In the sequel it will be convenient again to assume that the “work-or-sleep” sub-
routine uses a ρ-approximation algorithm for computing a schedule: The approx-
imation algorithm always finds a schedule of length at most ρ times the optimal
one.

Definition 17.3 (Algorithm SMARTSTART). The server of algorithm SMARTSTART

can assume three states (initially it is IDLE):

IDLE If the algorithm is idle at time T and new requests arrive, it calls “work-or-
sleep”. If the result is (S,work), the algorithm enters the busy state where it fol-
lows schedule S. Otherwise the algorithm enters the sleeping state with wakeup
time t ′, where t′ ≥ T is the earliest time such that t′ + l(S)≤ θ t ′ and l(S) denotes
the length of the just computed schedule S, i.e., t ′ = min{ t ≥ T : t + l(S)≤ θ t }.

SLEEPING In the sleeping state the algorithm simply does nothing until its
wakeup time t ′. At this time the algorithm reconsults the “work-or-sleep” sub-
routine. If the result is (S,work), then the algorithm enters the busy state and
follows S. Otherwise the algorithm continues to sleep with new wake-up time
min{ t ≥ t ′ : t + l(S)≤ θ t }.

BUSY In the busy state, i.e, while the server is following a schedule, all new re-
quests are (temporarily) ignored. As soon as the current schedule is completed
the server either enters the idle state (if there are no unserved requests) or it recon-
sults the “work-or-sleep” subroutine, which determines the next state (SLEEP-
ING or BUSY).

17.4 Known Performance Guarantees

Competitive analysis of OLDARP provided the following (see [1]):

• IGNORE and REPLAN are 2.5-competitive for the goal of minimizing the total
completion time of the schedule; SMARTSTART is 2-competitive for this problem,
which is best-possible.

• For the task of minimizing the maximal (average) waiting time or the maximal
(average) flow time there can be no algorithm with constant competitive ratio. In
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particular, the algorithms REPLAN, IGNORE, and SMARTSTART have unbounded
competitive ratios for this problem.

It should be noted that the corresponding off-line versions with release times (where
all requests are known at the start of the algorithm) are NP-hard to solve for the
objective functions of minimizing the average or maximal flow time—it is even
NP-hard to find a solution within a constant factor from the optimum [15]. The
off-line version without release times of minimizing the total completion time is
polynomially solvable on special graph classes butNP-hard in general [9, 2, 8, 13].

If we are considering a continuously operating system with continuously arriving
requests (i.e., the request set may be infinite), then the total completion time is un-
bounded anyway, thus meaningless. Thus, in this case, the existing positive results
cannot be applied, and the negative results tell us that we cannot hope for perfor-
mance guarantees that may be relevant in practice. In particular, the performances
of the two algorithms REPLAN and IGNORE cannot be distinguished by classical
competitive analysis at all (both are 2.5 competitive with respect to the total com-
pletion time and not competitive at all with respect to the average or maximal flow
time), and the performance of SMARTSTART can not be distinguished from any
other algorithm if the average or maximal flow time is the goal.

In order to find theoretical guidance regarding which algorithm should be cho-
sen, the notion of ∆ -reasonable load was developed [12]. A set of requests is ∆ -
reasonable if requests released during a period of time δ ≥ ∆ can always be served
in time at most δ . A set of requests R is reasonable if there exists a ∆ <∞ such
that R is ∆ -reasonable. That means for nonreasonable request sets we find arbitrarily
large periods of time where requests are released faster than they can be served—
even if the server has an optimal off-line schedule and all requests can be served
immediately. When a system has only to cope with reasonable request sets, we call
this situation reasonable load. Section 17.6 is devoted to the exact mathematical
setting of this idea, because we need it for the new results.

The main historical result based on this idea in [12] is this: For the OLDARP

under ∆ -reasonable load, IGNORE yields a maximal and an average flow time of
at most 2∆ , whereas the maximal and the average flow times of REPLAN are un-
bounded. The algorithms IGNORE and REPLAN have to solve a number of off-line
instances of OLDARP, which is in general NP-hard, as we already remarked. We
will show how we can derive results for IGNORE when using an approximate algo-
rithm for solving off-line instances of OLDARP (for approximation algorithms for
off-line instances of OLDARP, refer to [9, 2, 8, 13]).

To this end, the notion of reasonable request sets was refined [12], introducing a
second parameter that tells us how “fault tolerant” the request set is. In other words,
the second parameter tells us, how “good” the algorithm has to be to show stable
behavior. Again, roughly speaking, a set of requests is (∆ ,ρ)-reasonable if requests
released during a period of time δ ≥ ∆ can be served in time at most δ/ρ. If ρ = 1,
we get the notion of ∆ -reasonable as described above. For ρ > 1, the algorithm is
allowed to work “sloppily” (e.g., employ approximation algorithms) or have break-
downs to an extent measured by ρ and still show a stable behavior.
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17.5 Outline of New Contributions

Simulation results [11] show that IGNORE indeed outperforms REPLAN in terms of
the maximal flow time, but in terms of the average flow time the behavior of RE-
PLAN is usually much better. This left open the question about whether IGNORE

can be improved empirically without losing the performance guarantee. Alterna-
tively, the question is this: is there a version of REPLAN that wins the performance
guarantee of IGNORE but stays empirically efficient? As an answer to this question
we present the algorithm DELTAREPLAN in Sec. 17.12.

The following results in this chapter have not been published elsewhere before:

• We present a proof that the replan policy SMARTSTART that is optimally compet-
itive for the total completion time (the makespan) has bounded flow times under
reasonable load as well.

• We show an example for which a replan policy with snapshot objective “min-
imize the average flow time” produces unbounded maximal and average flow
times in the long run.

• We present one particular replan policy DELTAREPLAN that inherits the perfor-
mance guarantee of IGNORE but is able to yield a better average flow time in
simulations.

• We show that using a policy with bounded flow times yields uniformly bounded
waiting queues, i.e., strong stability.

17.6 Reasonable Load in Detail

Crucial for the concept of reasonable load is the off-line version of a request set.

Definition 17.4. The off-line version of r = (t,a,b) is the request

roff-line := (0,a,b).

The off-line version of R is the request set

Roff-line :=
{

roff-line : r ∈ R
}

.

An important characteristic of a request set with respect to system load consider-
ations is the time period in which it is released.

Definition 17.5. Let R be a finite request set for OLDARP. The release span δ (R)
of R is defined as

δ (R) := max
r∈R

t(r)−min
r∈R

t(r).

Provably good off-line algorithms exist for the total completion time and the
weighted sum of completion times. How can we make use of these algorithms in
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order to get performance guarantees for minimizing the maximum (average) wait-
ing (flow) times? We suggest a way of characterizing request sets that we want to
consider “reasonable.”

In a continuously operating system we wish to guarantee that work can be ac-
complished at least as fast as it is presented. The idea is stolen from queuing theory
where the input rate should not exceed the output rate. In the following we propose
a mathematical set-up that models this idea in a worst case fashion. Since we are
always working on finite subsets of the whole request set, the request set itself may
be infinite, modeling a continuously operating system.

We start by relating the release spans of finite subsets of a request set to the time
we need to fulfill the requests.

Definition 17.6. Let R be a request set for the OLDARP. A weakly monotone func-
tion

f :

{
R → R,

δ 7→ f (δ )

is a load bound on R if for any δ ∈ R and any finite subset S of R with δ (S) ≤
δ the completion time OPTcomp(Soff-line) of the optimum schedule for the off-line
version Soff-line of S is at most f (δ ). In formula:

OPTcomp(Soff-line)≤ f (δ ).

Remark 17.1. If the whole request set R is finite then there is always the trivial load
bound given by the total completion time of R. For every load bound f we may set
f (0) to be the maximum completion time we need for a single request, and nothing
better can be achieved.

A “stable” situation would easily obtained by a load bound equal to the identity
x 7→ x on R. (By “stable” we mean that the number of unserved requests in the
system does not become arbitrarily large.) In that case we would never get more
work to do than we can accomplish. If it has a load bound equal to a function id/ρ,
where id is the identity and where ρ ≥ 1, then ρ measures the tolerance of the
request set: Assume we have an off-line algorithm at our disposal that produces,
in the worst case, a cost of ρ times the cost of an optimal off-line algorithm, then
we can still accomplish all the incoming work by using the IGNORE-algorithm:
to compute a ρ-approximate schedule for the set R of all released but unserved
requests. The load bound and the performance guarantee ensure that the schedule
takes no longer than ρ ·∆(R)/ρ = ∆(R). Thus, the set of requests that are released
in the meantime has a release span no larger than ∆(R), and we can proceed by
computing a ρ-approximate schedule for that set.

However, we cannot expect that the identity (or any linear function) is a load
bound for OLDARP because of the following observation: a request set consisting
of one single request has a release span of 0, whereas in general it takes nonzero time
to serve this request. In the following definition we introduce a parameter describing
how far a request set is from being load-bounded by the identity.
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Definition 17.7. A load bound f is (∆ ,ρ)-reasonable for some ∆ ,ρ ∈R with ρ ≥ 1
if

ρ f (δ )≤ δ for all δ ≥ ∆

A request set R is (∆ ,ρ)-reasonable if it has a (∆ ,ρ)-reasonable load bound. For
ρ = 1, we say that the request set is ∆ -reasonable.

In other words, a load bound is (∆ ,ρ)-reasonable, if it is bounded from above
by id(x)/ρ for all x≥ ∆ and by the constant function with value ∆/ρ otherwise.

Remark 17.2. If ∆ is sufficiently small so that all request sets consisting of two
or more requests have a release span larger than ∆ , then the first-come-first-serve
policy is good enough to ensure that there are never more than two unserved requests
in the system. Hence, the request set does not require scheduling the requests in
order to provide for a stable system.

In a sense, ∆ is a measure for the combinatorial difficulty of the request set R.
If R is not ∆ -reasonable for any ∆ > 0, then this indicates that the capacity of the
system does not suffice to keep the system stable. Then, the task is not to find the
best control but to add capacity first.

Thus, it is natural to ask for performance guarantees for the flow times of al-
gorithms in terms of the reasonability ∆ of the input. This is discussed for various
algorithms in Sec. 17.8 through 17.12. Before that, we want to argue that flow time
bounds guarantee a certain form of stability.

17.7 Strong Stability

We want to find an on-line algorithm for which there is a uniform bound on the
number of requests in the system. More formally:

Definition 17.8. An on-line algorithm ALG for OLDARP on (X ,d) with origin o is
strongly ∆ -stable if there exists M ≥ 0 such that for each ∆ -reasonable request set R
the number of unserved requests in the system controlled by ALG is never larger
than M.

In the stochastic setting, Little’s formula [10] provides a relation between the traffic,
the expected number of requests in the system and the expected flow time of the
requests: The expected number of requests in the system equals the average number
of requests entering the system times the expected flow time of requests. We would
like to replace the traffic intensity by our ∆ , but since we are in a worst case setting,
the corresponding relation does not always hold.

In contrast to traffic conditions in queuing theory, ∆ is only indirectly related to
the number of requests in the system. The problem occurs when the service times for
requests are not bounded away from zero. The extreme case is an on-line traveling
salesman problem, where requests must be visited, nothing else; in that case, the
server can serve an unlimited number of requests in arbitrarily little time if it is
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already very close to the position of the requests. For a short time then, there may
be an unlimited number of requests in the system, although serving them requires
only an arbitrarily small amount of time, thereby not violating any ∆ -reasonability
requirement. It is clear that in such a situation no algorithm can achieve strong
stability.

The situation is different when serving a request takes at least time τ > 0. In
the elevator example this is true, because each pallet has to be transported for at
least one floor. We call this variant of OLDARP the on-line dial-a-ride problem with
minimal transport time τ or τ-OLDARP, for short.

We then obtain the following:

Theorem 17.1. If the maximal flow time of ALG for τ-OLDARP is at most f (∆) for
all ∆ -reasonable request sets, then ALG is strongly ∆ -stable. More specifically, the
number of requests in the system is never larger than f (∆)/τ .

Proof. The time we need to serve a request is at least τ . If a request subset with
release span at most ∆ contains more than ∆/τ requests, then we need more time
than ∆ = τ∆/τ to serve it off-line. The maximal number of requests that can enter
the system in time ∆ is therefore ∆/τ . If each request leaves the system after at most
f (∆) time units, then there may be at most

f (∆) · ∆
τ
· 1

∆
(17.1)

requests at the same time in the system. ⊓⊔
The result of this (elementary) discussion is that in order to obtain strongly stable

on-line algorithms it is sufficient to find on-line algorithms with bounded maximal
flow times.

17.8 Bounds for the Flow Times of IGNORE

We are now in a position to prove bounds for the maximal and average flow times,
respectively, in the OLDARP for algorithm IGNORE. We assume that IGNORE solves
off-line instances of OLDARP employing a ρ-approximation algorithm.

Let us consider the intervals in which IGNORE organizes its work in more detail.
The algorithm IGNORE induces a dissection of the time axis R in the following
way: We can assume, without loss of generality, that the first set of requests arrives
at time zero. Let δ 0 = 0, i.e., the point in time where the first set of requests is
released (these are processed by IGNORE in its first schedule). For i > 0 let δ i be
the duration of the time period the server is working on the requests that have been
ignored during the last δ i−1 time units. Then the time axis is split into the intervals

[δ 0 = 0,δ 0],(δ 0,δ 1],(δ 1,δ 1 +δ2],(δ 1 + δ2,δ 1 +δ2 + δ3], . . .
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Let us denote these intervals by I0, I1, I2, I3, . . . . Moreover, let Ri be the set of those
requests that are presented in Ii. Clearly, the complete set of requests R is the disjoint
union of all the Ri.

At the end of each interval Ii we solve an off-line problem: All requests to be
scheduled are already available. The work on the computed schedule starts imme-
diately (at the end of interval Ii) and is done δ i+1 time units later (at the end of
interval Ii+1). On the other hand, the time we need to serve the schedule is not more
than ρ times the optimal completion time OPTcomp(Ri

off-line) of Ri
off-line. In other

words:

Lemma 17.1. For all i≥ 0 we have

δ i+1 ≤ ρ ·OPTcomp(Ri
off-line).

Let us now state and prove the main result of this section, first proved in [12], about
the maximal flow time IGNOREmaxflow(R) incurred by IGNORE on any reasonable
request set R.

Theorem 17.2 ([12]). Let ∆ > 0 and ρ ≥ 1. For all instances of OLDARP with
(∆ ,ρ)-reasonable request sets, IGNORE employing a ρ-approximate algorithm for
solving off-line instances of OLDARP yields a maximal flow time of no more than
2∆ .

Proof. Let r be an arbitrary request in Ri for some i≥ 0, i.e., r is released in Ii. By
construction, the schedule containing r is finished at the end of interval Ii+1, i.e., at
most δ i +δ i+1 time units later than r was released. Thus, for all i > 0 we get that

IGNOREmaxflow(Ri)≤ δ i +δ i+1.

If we can show that δ i ≤ ∆ for all i > 0 then we are done. To this end, let f : R→R
be a (∆ ,ρ)-reasonable load bound for R. Then OPTcomp(Ri

off-line)≤ f (δ i) because
δ (Ri)≤ δ i.

By Lemma 17.1, we get for all i > 0,

δ i+1 ≤ ρOPTcomp(Ri
off-line)≤ ρ f (δ i)≤max{δ i,∆}.

Using δ 0 = 0 the claim now follows by induction on i. ⊓⊔
The average flow time of IGNORE is also bounded, because the average is never

larger than the maximum.

Corollary 17.1. Let ∆ > 0. For all ∆ -reasonable request sets algorithm IGNORE

yields a average flow time no more than 2∆ .
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17.9 Bounds for the Flow Times of SMARTSTART

The analysis of SMARTSTART under reasonable load was not published before; it
essentially parallels that of IGNORE, so we only highlight the differences. The cru-
cial observation needed is formulated in the following lemma.

Lemma 17.2. For (∆ ,ρ)-reasonable request sequences, the server of SMARTSTART

never sleeps after time t̄ := ∆/θ −1.

Proof. Consider a call to the work-or-sleep routine at an arbitrary time t ≥ t̄ .
Let R be the set of requests not served by SMARTSTART at time t and let S be
a ρ-approximate shortest schedule for R. By the (∆ ,ρ)-reasonability of the input
sequence, the length of schedule S for R can be bounded from above by

l(S)≤ ρ ·max

{
∆
ρ

,
δ (R)

ρ

}
= max{∆ ,δ (R)}.

Trivially, we have δ (R) ≤ t, since all requests in R have been released at time t.
Hence, it follows that

t + l(S)≤ t + max{∆ ,δ (R)}
≤ t + max{∆ ,t} (since δ (R)≤ t)

= t + max{(θ −1)t̄,t} (since t̄ = ∆/(θ −1))

≤ θ t (since t ≥ t̄ ).

Consequently, the work-or-sleep routine does not return the invitation to sleep.
The same arguments as given above show that, if SMARTSTART goes to sleep

before some time t < t̄ , the wak-eup time is no later than time t̄. Hence, the lemma
follows. ⊓⊔
Let S be the last schedule started by SMARTSTART no later than time t̄ and denote
by tS ≤ t̄ its start time. From Lemma 17.2 we conclude that from time t̄ on, SMART-
START behaves like IGNORE, provided the input sequence is (∆ ,ρ)-reasonable. Us-
ing the arguments given in the proof of Theorem 17.2 we can conclude that the flow
time of any request released after time tS is bounded from above by 2∆ .

It remains to treat the requests released before time t̄. Using again the arguments
of Theorem 17.2 we derive that all requests released after time tS have flow time
at most 2∆ and we finally need to consider those requests released until time tS.
Each of these requests is either served by S or by an even earlier schedule. Since,
by definition of SMARTSTART, the transportation schedule S is completed no later
than time

θ tS < θ t̄ =
θ

θ −1
∆

we obtain the following result:
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Theorem 17.3. Let ∆ > 0 and ρ ≥ 1. For all instances with (∆ ,ρ)-reasonable re-
quest sets, algorithm SMARTSTART employing a ρ-approximation algorithm in its
work-or-sleep routine yields a maximal flow time of no more than

max

{
θ

θ − 1
∆ ,2∆

}

In particular, if θ ≥ 2, then the maximal flow time provided by SMARTSTART is
bounded from above by 2∆ . ⊓⊔
As in the case of IGNORE a we can derive a trivial upper bound of 2∆ for the average
flow time of SMARTSTART under reasonable load.

17.10 An Example with Unbounded Flow Times for REPLAN

In the sequel, we provide an instance of OLDARP and a ∆ -reasonable request set R
such that the maximal flow time REPLANmaxflow(R) (and thus also the average flow
time) of REPLAN is unbounded. This was first proved in [12]. Recall that REPLAN

uses a snapshot optimization problem in which the total completion time is mini-
mized. Hence, REPLAN is not a naı̈ve replan policy, since our evaluation objective
is the maximal flow time.

Theorem 17.4 ([12]). There is an instance of OLDARP under reasonable load such
that the maximal and the average flow time of REPLAN is unbounded.

Proof. In Fig. 17.2 there is a sketch of an instance for the OLDARP. The metric
space is a path on four nodes a,b,c,d with origin a; the length of the path is ℓ, the
distances are d(a,b) = d(c,d) = ε , and hence d(b,c) = ℓ− 2ε. At time 0 a request
from a to d is issued; at time 3/2ℓ− ε , the remaining requests periodically come
in pairs from b to a and from c to d, respectively. The time distance between them
is ℓ− 2ε . We show that for ℓ = 18ε the request set R indicated in the picture is
2 2

3ℓ-reasonable. Indeed: it is easy to see that the first request from a to d does not
influence reasonability. Consider an arbitrary set Rk of k adjacent pairs of requests
from b to a and from c to d, respectively. Then the release span δ (Rk) of Rk is

δ (Rk) = (k−1)(ℓ−2ε).

The off-line version Rk
off-line of Rk can be served as follows: First, move the server

to c, the starting point of the upper requests. This contributes cost ℓ− ε. Next, serve
all the upper requests and go back to c: this contributes cost k×2ε . Then, go down
to b, the starting point of the lower requests. This contributes another ℓ− 2ε to the
cost. Now, serve the first lower requests. The additional cost for this is ε . Finally,
serve the remaining lower requests at an additional cost of (k−1) ·2ε. In total, we
have the following:

OPTcomp(Rk
off-line) = 2ℓ+(k−1) ·4ε.
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3/2ℓ− ε ℓ−2ε ℓ−2ε
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c

Fig. 17.2 A sketch of a (2 2
/

3 · ℓ)-reasonable instance of OLDARP (ℓ = 18ε). The horizontal axis
holds the time, the vertical axis depicts the metric space in which the server moves. A request is
denoted by an arrow from its starting point to its endpoint horizontally positioned at its release
time.

In order to find the smallest parameter ∆ for which the request set Rk is ∆ -
reasonable we solve for the integer k− 1 and get

k− 1 =

⌈
2ℓ

ℓ−6ε

⌉
= 3.

Hence, we can set ∆ to

∆ := OPTcomp(R4
off-line) = 2 2

3ℓ.

Now, we define

f :






R → R,

δ 7→





∆ , for δ < ∆

δ , otherwise.

By construction, f is a load bound for R4. Because the time gap after which a
new pair of requests occurs is certainly larger than the additional time we need to
serve it (off-line), f is also a load bound for R. Thus, R is ∆ -reasonable, as desired.

Now: how does REPLAN perform in this instance? In Fig. 17.3 we see the track of
the server following the preliminary schedules produced by REPLAN on the request
set R.

The maximal flow time of REPLAN on this instance is realized by the flow time
of the request (3/2ℓ− ε,b,a), which is unbounded.
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ℓ
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3/2ℓ− ε ℓ−2ε

Fig. 17.3 The track of the REPLAN-server is drawn as a line in the diagram. At each point in time
t we can read off the position of the server by looking at the height of the line at the horizontal
position t . Because a new pair of requests is issued exactly when the server is still closer to the
requests at the top, all the requests at the bottom will be postponed in an optimal preliminary
schedule. Thus, the server always returns to the top when a new pair of requests arrives.

Moreover, since all requests from b to a are postponed after serving all the re-
quests from c to d we get that REPLAN produces an unbounded average flow time
as well. ⊓⊔

In Figure 17.4 we show the track of the server under the control of the IGNORE-
algorithm. After an initial inefficient phase the server ends up in a stable operating
mode. This example also shows that the analysis of IGNORE in Sec. 17.8 is sharp.

17.11 An Example with Unbounded Flow Times for
AVGFLOWREPLAN

It is quite a natural question to ask whether modified replan strategies AVGFLOWRE-
PLAN or MAXFLOWREPLAN which use snapshot problems that minimize the av-
erage and maximal flow times, respectively, would give a reasonable bound on
the maximal and average flow times in the on-line situation. In our taxonomy,
MAXFLOWREPLAN implements the naı̈ve replan policy when the evaluation objec-
tive is the minimization of the maximal flow time. And AVGFLOWREPLAN corre-
sponds to the naı̈ve replan policy when the evaluation objective is the minimization
of the average flow time.
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Fig. 17.4 The track of the IGNORE-server.

We mentioned already that the off-line problem of minimizing the average flow
time is very hard. In the off-line problem that AVGFLOWREPLAN has to solve, how-
ever, all requests have release times in the past. It is then easy to see that the problem
is equivalent to the minimization of the average completion time counted from the
point in time where the planning takes place. Moreover, since the average flow time
is larger by the “average age” of the requests, the performance guarantees of ap-
proximation algorithms minimizing the average completion time carry over. Still,
in our computational experience minimization of the average completion time takes
more time than minimizing the total completion time.

Anyway: the following result shows that even under reasonable load we cannot
expect a worst case stable behaviour of AVGFLOWREPLAN, a so far unpublished
result.

Theorem 17.5. There is an instance of OLDARP under reasonable load such that
the maximal and average flow times of AVGFLOWREPLAN are unbounded.

Proof. We construct a set of requests in the same metric space as in previous Sec.
17.10 as follows:

• At time 0 we issue again one request from a to d.
• At time T0 := 3/2ℓ− ε we issue a pair of requests Ru

1 from c to d and Rl
1 from b

to a.
• At time Ti+1 := Ti + ℓ+ 2(i−2)ε we issue:

– a set of i “upper” requests Ru
i+1 from c to d, and

– one “lower” request Rl
i+1 from b to a.

Figure 17.5 sketches the construction.
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Fig. 17.5 The track of the AVGFLOWREPLAN-server on a the example from Theorem 17.5.

For ℓ = 18ε this request set is again 2 2
3ℓ-reasonable, since we have increased

the time intervals between the release times of the requests by the additional amount
needed to serve the additional copies of upper requests.

At time Ti, for all i > 0, AVGFLOWREPLAN has still to serve as many upper
requests as there are lower requests. Thus, at Ti the schedule with minimum average
flow time for the currently available requests serves the upper requests first. Hence,
the requests at the bottom have to wait for an arbitrarily long period of time.

In order to prove the assertion concerning the average flow time we consider the
result f (RN) that AVGFLOWREPLAN produces on the input set RN , which contains
all requests up to time TN .

The sum of all flow times fΣ (RN) is dominated by the waiting times of the lower
requests. That is, it is at least

fΣ (RN)≥
N

∑
k=1

N

∑
i=k

(ℓ+2(i− 2)ε)

≥
N

∑
k=1

N

∑
i=k

(i−2)ε.

The number of requests #RN in RN is

#RN = 1 +
N

∑
k=1

(k +1),

so that
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f (RN) =
fΣ (RN)

#RN

N→∞−→ ∞,

which completes the proof. ⊓⊔
A policy that minimizes just the maximal flow time does not make a lot of sense
since sometimes this only determines which request is to be served first; the order
in which all the other requests are scheduled is unspecified. Thus, the most sensi-
ble policy in this respect seems to be the following: Consider an off-line instance
of the dial-a-ride problem. The vector consisting of all flow times of requests in a
feasible solution ordered decreasingly is the flow vector. All flow vectors are or-
dered lexicographically. The on-line policy MAXFLOWREPLAN for the on-line dial-
a-ride problem yields the following: Whenever a new request becomes available
MAXFLOWREPLAN computes a new schedule of all yet unserved requests minimiz-
ing the flow vector.

It is an open problem what the performance of this policy is under ∆ -reasonable
load. In practice, however, it is probably too difficult to solve the snapshot problem
with this objective function.

17.12 Combining the Best of two Ideas: DELTAREPLAN

A closer inspection of the behavior of IGNORE and SMARTSTART, resp., versus
the behaviour of REPLAN and AVGFLOWREPLAN, respectively, shows: REPLAN is
unstable under ∆ -reasonable load because of infinite deferment of requests, which
cannot happen in IGNORE, since IGNORE does not replan often enough to defer
requests. On the other hand: reoptimizing less frequently means leaving out op-
portunities to improve, and thus, on average, IGNORE is empirically worse than
REPLAN. The key to combine the advantages of both policies is to constrain the
reoptimization that REPLAN performs. The result is the following on-line algorithm
DELTAREPLAN, so far unpublished, which works as follows:

Whenever a new request becomes available, DELTAREPLAN computes a prelim-
inary transportation schedule for the set R of all available requests by solving the
problem of minimizing the total completion time of Roff-line under the restriction
that no request in the transportation schedule have predicted flow time more than
2∆ . If the makespan of the optimal transportation schedule is at most ∆ , the new
schedule is accepted and becomes the active schedule. The new schedule is rejected
otherwise, whence the previous schedule is kept active. It then moves the server ac-
cording to the active schedule until a new request arrives or the schedule is done.
Note that the new requests that trigger the reoptimization are not rejected. It is the
new schedule that is rejected. Thus, since we do not allow rejection of requests,
DELTAREPLAN is only feasible if each request is in an accepted schedule, sooner or
later.

Summarized, we define:
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Definition 17.9 (Algorithm DELTAREPLAN). Algorithm DELTAREPLAN (∆ ,ρ) has
parameters ∆ > 0,ρ > 1 (indicating that it aims at (∆ ,ρ)-reasonable request sets)
and works with an internal buffer holding an active schedule and possibly some
requests. It may assume the following states (initially it is IDLE):

IDLE Wait for the next point in time when requests become available. Goto
PLAN.

PLAN Produce a preliminary transportation schedule for all currently available
requests R (taken from the buffer) minimizing comp for Roff-line under the con-
straint that no request have a predicted flow time exceeding 2∆ , possibly by a
ρ-approximation algorithm. If the problem is infeasible or the computed com-
pletion time exceeds ∆ , reject the new schedule and keep the old one active,
thereby buffering the new requests. Otherwise, replace the active schedule by the
new one. Goto BUSY.

BUSY Serve requests according to the active schedule. If a new requests is re-
leased or the active schedule is done, goto PLAN.

The result is:

Theorem 17.6. Let ∆ > 0 and ρ ≥ 1. For all instances with (∆ ,ρ)-reasonable re-
quest sets, algorithm DELTAREPLAN (∆ ,ρ) employing a ρ-approximation algo-
rithm for reoptimization yields a maximal flow time of no more than 2∆ .

Proof. As long as all new schedules are rejected, DELTAREPLAN (∆ ,ρ) works in
the same way as IGNORE. Whenever a new schedule is accepted, the constraints on
the flow times of the scheduled requests guarantee the bound by construction. Since
no schedule of length larger than ∆ is accepted, rejection of all optimal schedules
thereafter yields a maximal release span for buffered requests of at most ∆ . The
buffered requests can therefore theoretically be served in time at most ∆/ρ. Be-
cause DELTAREPLAN(∆ ,ρ) employs a ρ-approximation algorithm, it computes a
schedule of length at most ∆ . Since all requests during the work on a schedule have
been ignored, the flow times of them are exactly the flow times IGNORE would have
produced. Thus, the flow time constraints are satisfied for all of them. Therefore,
the first computed schedule after the work on the active schedule has finished will
be accepted. Consequently, every request will be in an accepted schedule at some
point. Thus, the claim holds. ⊓⊔

What happens if we do not know how reasonable the request sets are going to be,
i.e., if we do not know (∆ ,ρ) in advance? Let us restrict to the case with approx-
imation factor ρ = 1 in order to concentrate on the core aspect. If DELTAREPLAN

is run with a ∆ ′ < ∆ on a ∆ -reasonable request set, then all schedules that would
be rejected with DELTAREPLAN (∆ ) would also be rejected by DELTAREPLAN (∆ ′).
A problem may occur that when the active schedule is done: the new schedule has
makespan larger than ∆ ′ so that we have to reject it; but then we are stuck. We can
then modify DELTAREPLAN in three ways to bypass this problem:

IGNORE-DELTAREPLAN

Accept all schedules that are computed because the old schedule is done.
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DOUBLE-DELTAREPLAN

∆ ′′ := 2∆ ′ as a new estimate of ∆ and run DELTAREPLAN (∆ ′′). This is often
called doubling technique for parametrized algorithms [4].

DELTAREPLAN

Take the makespan ∆ ′′ of the new schedule (which is at most ∆ ) as a new estimate
of ∆ and run DELTAREPLAN (∆ ′′).

The first option uses IGNORE as a back-up whenever DELTAREPLAN (∆ ′) fails
to produce a schedule. This way, we obtain the same bound 2∆ on the flow times
but we may lose some efficiency due to too many rejected schedules.

Theorem 17.7. Let ∆ > 0 and ρ ≥ 1. For all instances with (∆ ,ρ)-reasonable re-
quest sets, algorithm IGNORE-DELTAREPLAN employing a ρ-approximation algo-
rithm for reoptimization yields a maximal flow time of no more than 2∆ .

The estimate for ∆ in the doubling technique will at some point surpass the
true ∆ . Then, we still get a bound on the flow times, but only with respect to the
over-estimated ∆ , i.e., a bound of 4∆ in the worst case.

Theorem 17.8. Let ∆ > 0 and ρ ≥ 1. For all instances with (∆ ,ρ)-reasonable re-
quest sets, algorithm DOUBLE-DELTAREPLAN employing a ρ-approximation algo-
rithm for reoptimization yields a maximal flow time of no more than 4∆ . ⊓⊔

Since for DELTAREPLAN the estimates for ∆ never exceed ∆ and the reoptimiza-
tion problems as well as the acceptance of new schedules are at least as constrained
as for DELTAREPLAN(∆), we conclude that DELTAREPLAN has flow times bounded
by 2∆ , and the loss of efficiency is decreasing as the estimate of ∆ gets closer and
closer to ∆ . We obtain the following result:

Theorem 17.9. Let ∆ > 0 and ρ ≥ 1. For all instances with (∆ ,ρ)-reasonable re-
quest sets, Algorithm DELTAREPLAN employing a ρ-approximation algorithm for
reoptimization yields a maximal flow time of no more than 2∆ . ⊓⊔

This basic DELTAREPLAN-technique can be applied in much more general situ-
ations (see [20] for a sketch). We arrived at an algorithm very much in the spirit of
MPC with ingredients from on-line optimization and queuing theory: For a classi-
cal problem in on-line optimization, estimate the characteristic difficulty of the input
stream in terms of ∆ , the definition of which was inspired by queuing theory, and
use a cleverly constrained reoptimization model with a suitable objective to obtain
a strongly stable system.

17.13 Conclusion

We have shown how naı̈ve reoptimization policies in the control of elevators may
lead to unstable systems. Moreover, via the notion of (∆ ,ρ)-reasonable load we
found a modification of the usual reoptimization policies that achieves strong stabil-
ity, a new notion aiming at stability in worst case analysis in a queuing system. The
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new notions and the policies emerge as a combination of paradigms from basic on-
line optimization, queuing theory and model predictive control. We conjecture that
closing the gap between these fields will lead to interesting, sometimes surprisingly
simple, but yet useful innovations.

The analysis under reasonable load is valid in much larger generality. Essen-
tially, every system in which servers have to serve requests can be captured. This
encompasses also general dial-a-ride problems. A generic formulation of the prin-
ciple based on a generic integer linear programming formulation of the off-line ver-
sion of some on-line problem is presented in [20]. We did not present this here for
the sake of a less abstract exposition.

There are several open questions in this area:

• Does MAXFLOWREPLAN produce bounded flow times in terms of ∆ under ∆ -
reasonable load?

• The policies in this chapter are all based on the computation of higher level in-
formation, namely a precomputed schedule. On this higher level, there is no im-
mediate notion of a “terminal state.” Is there any version of “terminal state con-
straints” or “terminal costs” for the snapshot problem that can guarantee stability
of the corresponding replan policy?

• Of course, since the reasonability ∆ is a worst case measure, performance may
benefit if ∆ is considered as a dynamically changing property of the request set
which should be estimated in a time-dependent fashion in order not to use a
too large ∆ most of the time, especially, when there are traffic peaks. Can one
rigorously quantify the benefits of such a dynamic approach?

• We have no nontrivial theoretical guarantees for the expected average flow-times
over a distribution of request sets. Does DELTAREPLAN have provably better
average flow times than IGNORE, as it seems so empirically?

• Experience shows that minimizing the average quadratic flow times in the snap-
shot problem leads to empirically stable systems. Can one guarantee strong sta-
bility for them?

The LCCC theme semester revealed that quite a few types of logistic control
problems are attacked by more than one mathematical community; up to now rather
in isolation than in cooperation. We would be very happy if this volume—and,
in particular, this chapter—motivated a thorough performance comparison. More
specifically: What can be achieved, in theory and practice, by the various techniques
in queuing theory, model predictive control, stochastic dynamic optimization and
on-line optimization on a common set of problems?
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22. Tarău, A.: Model-based control for postal automation and baggage handling. Ph.D. thesis,
Technische Universiteit Delft (2010)

412 S.O. Krumke and J. Rambau

     irmgn.ir



Author Index

Admati, 143
Aldeen, 80
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Tarău, xxix, 359, 386
Tatikonda, 81
Teel, 192, 287
Teuliere, 167
Thomas, 141, 144
Thrun, 168
Tilbury, 192
Tomlin, 129, 168
Trangbaek, xxix, 339
Tse, 110
Tsitsiklis, 52, 110, 129
Tuna, 287

Uhlmann, 168
Urabe, 258

Vaidya, 243
Valimaki, 129
Varaiya, 52
Vickrey, 129
Vidyasagar, 25

     irmgn.ir



Author Index 417

Vinnicombe, 25
Voulgaris, 52, 53
Vredeveld, 411

Walrand, 111
Wang, xxix, 53, 81, 168, 171, 193
Wang Xiaofeng, 170
Waslander, 129
Westervelt, 258
Weyns, 386
White, 52
Wicker, 111
Wilson, 129
Wirth, 287
Wisniewski, 358
Witsenhausen, 53
Worthmann, xxix, 261, 287
Wright, 358, 385

Wynter, 110

Xargay, 192
Xiao, 168, 169
Xie, 80
Xu, xxix
Xu Yunwen, 215

Yoshikawa, 80
Yu, 112
Yu Zuwei, 129
Yuksel, 81

Zampieri, 167
Zelazo, 53
Zhang, xxix, 25, 55, 81, 358
Zhou, 53
Zwart, 25

     irmgn.ir



     irmgn.ir



Subject Index

admissible trajectory, 266
algorithm

best-response, 104
consensus, 150, 172
deterministic annealing (DA), 217
iterative waterfilling (IWFA), 104
Lloyd, 221
merge, 153
proximal decomposition, 104
proximal decomposition (PDA), 92

best-response algorithm, 104

climate reconstruction, 209
condition

dual, 10, 13
indifference, 134
KKT, Karush-Kuhn-Tucker, 95, 119
primal, 13, 17

connectivity
strong, 58

consensus algorithm, 150, 172
constraint

global flexible, 101
individual conservative, 101
jointly convex shared, 94
stabilizing terminal, 269

constraint qualification (CQ), 95
control

dynamic price-based, 113
cooperative control, 261
CQ, constraint qualification, 95
criterion

dual stability, 19
primal stability, 17

cross validation, 197

DA, deterministic annealing, 217
DC

function, 301
programming, 301

DC, difference of convex, 301
decentralized fixed modes (DFM), 56
DEKF, distributed extended Kalman filter, 155
DFM, decentralized fixed modes, 56
DHA,discrete hybrid automata, 319
distributed EKF, 153
distributed extended Kalman filter (DEKF),

155
distributed PF, 153
distributed UKF, 153
distributed unscented Kalman filter (DUKF),

155
dominant strategy, 123
DPF, distributed particle filter, 147, 156, 160
dual condition, 10, 13
dual stability criterion, 19
DUKF, distributed unscented Kalman filter,

155
dynamic maximum entropy, 217
dynamic price-based control, 113

EKF, distributed, 153
EKF, extended Kalman filter, 147, 153
equation

Euler-Lagrange, 246
equilibrium

Markov perfect (MPE), 127, 133
Nash, 122, 262

equivalent kernel, 200
Euler-Lagrange equation, 246
extended Kalman filter (EKF), 153
extension

natural interval, 296

     irmgn.ir



420 Subject Index

Taylor interval, 296

first-order condition (FOC), 136
fMRI, functional magnetic resonance imaging,

207
FOC, first-order condition, 136
FSM, finite-state machine, 319
functional magnetic resonance imaging, 207

game
bargaining, 131, 132
Rubinstein, 131

Gauss-Seidel scheme, 91
Gaussian mixture model (GMM), 158
Generalized Nash equilibrium problems

(GNEP), 84
generalized observability index, 58
global flexible constraints, 101
GMM, Gaussian mixture model, 158
GNEP, generalized Nash equilibrium problem,

84
GPU, graphical processing unit, 147
graphical processing unit (GPU, 147

index
generalized observability, 58

indifference condition, 134
individual conservative constraints, 101
input-to-state stability (ISS), 172
integral quadratic constraints (IQC), 3
IQC, integral quadratic constraints, 3
ISS, input-to-state stability, 172
IWFA, iterative waterfilling algorithm, 104

Kalman filter
distributed unscented, 155
extended (EKF), 147
unscented (UKF), 147

kernel, 198
kernel

Gaussian, 211
K-nearest neighbor, 211
local linear embedding, 211
squared exponential, 211

kernel smoother, 200
KKT, Karush-Kuhn-Tucker, 95, 119

line segment generator, 297
linear estimator, 200
linear kernel smoother, 200
LLE, 207, 211
local linear embedding, 211
locally linear embedding, 207

manifold learning, 197
Markov perfect equilibrium, 127
Markov perfect equilibrium (MPE), 133
MILP optimization, 377
MILP, mixed integer linear programming, 365,

377
MIQP, mixed integer quadratic programming,

320
mixed integer linear programming (MILP),

365, 377
mixed integer programming, 320
MLD, mixed logical dynamical, 317
model reference adaptive controller (MRAC),

178
MPE, Markov perfect equilibrium, 133
MRAC, model reference adaptive controller,

178
MUI, multiuser interference, 108
multiuser interference (MUI), 108

Nadaraya–Watson smoother, 200
Nash efficiency, 118, 123
Nash equilibrium, 122, 262
Nash equilibrium problem (NEP), 84
Nash strategy-proof, 123
natural interval extension, 296
NCP, nonlinear complementarity problem, 97
NEP, Nash equilibrium problem, 84
nonlinear complementarity problem (NCP), 97
nonparametric model, 196

overfitting, 197

particle filter
distributed (DPF), 147, 156, 160

particle filter (PF), 153
PDA, proximal decomposition algorithm

(PDA), 92
PF, distributed, 153
PF, particle filter, 153
primal condition, 13, 17
primal stability criterion, 17
proximal decomposition algorithm (PDA), 92,

104
PWA, piece-wise affine, 318

QDS, quotient decentralized system, 58
QIP, quadratic integer programming, 321
quotient decentralized system (QDS), 58

regularization, 198
release span, 396
Rubinstein game, 131

scheme

     irmgn.ir



Subject Index 421

Gauss–Seidel, 91
semi-supervised, 197
semi-supervised smoothness, 205
solution

normalized, 95
two-player, 43
variational, 95

spectral factorization, 37, 38
stochastic dominance, 389
supervised learning, 196
supply chain, 260

Taylor interval extension, 296
trajectory

admissible, 266
trigonometric polynomial, 38
two-player solution, 43

UKF, distributed, 153
UKF, unscented Kalman filter, 147, 153
unscented Kalman filter (UKF), 153
unscented transformation (UT), 158
unsupervised learning, 196
UT, unscented transformation, 158

WDMR, 200
weight determination by manifold regulariza-

tion, 200
Wiener-Hopf factorization, 40

YALMIP, 337

zonotope
extension, 298
inclusion, 298

     irmgn.ir



Lecture Notes in Control and Information Sciences

Edited by M. Thoma, F. Allgöwer, M. Morari

Further volumes of this series can be found on our homepage:
springer.com

Vol. 417: Johansson, R.; Rantzer, A. (Eds.):
Distributed Decision Making and Control
421 p. 2012 [978-1-4471-2264-7]

Vol. 416: Varga, A.; Hansson, A.;
Puyou, G. (Eds.):
Optimization Based Clearance of Flight
Control Laws
451 p. 2012 [978-3-642-22626-7]

Vol. 412: Fridman, L.; Moreno, J.;
Iriarte R. (Eds.):
Sliding Modes after the First Decade of the
21st Century
595 p. 2011 [978-3-642-22163-7]

Vol. 411: Kaczorek, T.;
Selected Problems of Fractional Systems Theory
344 p. 2011 [978-3-642-20501-9]

Vol. 410: Bourlès, H.; Marinescu, B.;
Linear Time-Varying Systems
637 p. 2011 [978-3-642-19726-0]

Vol. 409: Xia, Y.; Fu, M.; Liu, G.-P.;
Analysis and Synthesis of
Networked Control Systems
198 p. 2011 [978-3-642-17924-2]

Vol. 408: Richter, J.H.;
Reconfigurable Control of

Nonlinear Dynamical Systems
291 p. 2011 [978-3-642-17627-2]

Vol. 407: Lévine, J.; Müllhaupt, P.:
Advances in the Theory of Control,
Signals and Systems with
Physical Modeling
380 p. 2010 [978-3-642-16134-6]

Vol. 406: Bemporad, A.; Heemels, M.;
Johansson, M.:
Networked Control Systems
appro. 371 p. 2010 [978-0-85729-032-8]

Vol. 405: Stefanovic, M.; Safonov, M.G.:
Safe Adaptive Control
appro. 153 p. 2010 [978-1-84996-452-4]

Vol. 404: Giri, F.; Bai, E.-W. (Eds.):
Block-oriented Nonlinear System Identification
425 p. 2010 [978-1-84996-512-5]

Vol. 403: Tóth, R.;
Modeling and Identification of
Linear Parameter-Varying Systems
319 p. 2010 [978-3-642-13811-9]

Vol. 402: del Re, L.; Allgöwer, F.;
Glielmo, L.; Guardiola, C.;
Kolmanovsky, I. (Eds.):
Automotive Model Predictive Control
284 p. 2010 [978-1-84996-070-0]

Vol. 401: Chesi, G.; Hashimoto, K. (Eds.):
Visual Servoing via Advanced
Numerical Methods
393 p. 2010 [978-1-84996-088-5]

Vol. 400: Tomás-Rodríguez, M.;
Banks, S.P.:
Linear, Time-varying Approximations
to Nonlinear Dynamical Systems
298 p. 2010 [978-1-84996-100-4]

Vol. 399: Edwards, C.; Lombaerts, T.;
Smaili, H. (Eds.):
Fault Tolerant Flight Control
appro. 350 p. 2010 [978-3-642-11689-6]

Vol. 398: Hara, S.; Ohta, Y.;
Willems, J.C.; Hisaya, F. (Eds.):
Perspectives in Mathematical System
Theory, Control, and Signal Processing
appro. 370 p. 2010 [978-3-540-93917-7]

Vol. 397: Yang, H.; Jiang, B.;
Cocquempot, V.:
Fault Tolerant Control Design for
Hybrid Systems
191 p. 2010 [978-3-642-10680-4]

Vol. 396: Kozlowski, K. (Ed.):
Robot Motion and Control 2009
475 p. 2009 [978-1-84882-984-8]

Vol. 395: Talebi, H.A.; Abdollahi, F.;
Patel, R.V.; Khorasani, K.:
Neural Network-Based State
Estimation of Nonlinear Systems
appro. 175 p. 2010 [978-1-4419-1437-8]

     irmgn.ir



Vol. 394: Pipeleers, G.; Demeulenaere, B.;
Swevers, J.:
Optimal Linear Controller Design for
Periodic Inputs
177 p. 2009 [978-1-84882-974-9]

Vol. 393: Ghosh, B.K.; Martin, C.F.;
Zhou, Y.:
Emergent Problems in Nonlinear
Systems and Control
285 p. 2009 [978-3-642-03626-2]

Vol. 392: Bandyopadhyay, B.;
Deepak, F.; Kim, K.-S.:
Sliding Mode Control Using Novel Sliding
Surfaces
137 p. 2009 [978-3-642-03447-3]

Vol. 391: Khaki-Sedigh, A.; Moaveni, B.:
Control Configuration Selection for
Multivariable Plants
232 p. 2009 [978-3-642-03192-2]

Vol. 390: Chesi, G.; Garulli, A.;
Tesi, A.; Vicino, A.:
Homogeneous Polynomial Forms for
Robustness Analysis of Uncertain
Systems
197 p. 2009 [978-1-84882-780-6]

Vol. 389: Bru, R.; Romero-Vivó,
S. (Eds.):
Positive Systems
398 p. 2009 [978-3-642-02893-9]

Vol. 388: Jacques Loiseau, J.; Michiels, W.;
Niculescu, S-I.; Sipahi, R. (Eds.):
Topics in Time Delay Systems
418 p. 2009 [978-3-642-02896-0]

Vol. 387: Xia, Y.;
Fu, M.; Shi, P.:
Analysis and Synthesis of
Dynamical Systems with Time-Delays
283 p. 2009 [978-3-642-02695-9]

Vol. 386: Huang, D.;
Nguang, S.K.:
Robust Control for Uncertain
Networked Control Systems with
Random Delays
159 p. 2009 [978-1-84882-677-9]

Vol. 385: Jungers, R.:
The Joint Spectral Radius
144 p. 2009 [978-3-540-95979-3]

Vol. 384: Magni, L.; Raimondo, D.M.;
Allgöwer, F. (Eds.):
Nonlinear Model Predictive Control
572 p. 2009 [978-3-642-01093-4]

Vol. 383: Sobhani-Tehrani E.;
Khorasani K.;
Fault Diagnosis of Nonlinear Systems
Using a Hybrid Approach
360 p. 2009 [978-0-387-92906-4]

Vol. 382: Bartoszewicz A.;
Nowacka-Leverton A.;
Time-Varying Sliding Modes for Second
and Third Order Systems
192 p. 2009 [978-3-540-92216-2]

Vol. 381: Hirsch M.J.; Commander C.W.;
Pardalos P.M.; Murphey R. (Eds.)
Optimization and Cooperative Control Strategies:
Proceedings of the 8th International Conference
on Cooperative Control and Optimization
459 p. 2009 [978-3-540-88062-2]

Vol. 380: Basin M.
New Trends in Optimal Filtering and Control for
Polynomial and Time-Delay Systems
206 p. 2008 [978-3-540-70802-5]

Vol. 379: Mellodge P.; Kachroo P.;
Model Abstraction in Dynamical Systems:
Application to Mobile Robot Control
116 p. 2008 [978-3-540-70792-9]

Vol. 378: Femat R.; Solis-Perales G.;
Robust Synchronization of Chaotic Systems
Via Feedback
199 p. 2008 [978-3-540-69306-2]

Vol. 377: Patan K.
Artificial Neural Networks for
the Modelling and Fault
Diagnosis of Technical Processes
206 p. 2008 [978-3-540-79871-2]

Vol. 376: Hasegawa Y.
Approximate and Noisy Realization of
Discrete-Time Dynamical Systems
245 p. 2008 [978-3-540-79433-2]

Vol. 375: Bartolini G.;
Fridman L.; Pisano A.; Usai E. (Eds.)
Modern Sliding Mode Control Theory
465 p. 2008 [978-3-540-79015-0]

Vol. 374: Huang B.; Kadali R.
Dynamic Modeling, Predictive Control
and Performance Monitoring
240 p. 2008 [978-1-84800-232-6]

Vol. 373: Wang Q.-G.; Ye Z.; Cai W.-J.;
Hang C.-C.
PID Control for Multivariable Processes
264 p. 2008 [978-3-540-78481-4]

Vol. 372: Zhou J.; Wen C.
Adaptive Backstepping Control of
Uncertain Systems
241 p. 2008 [978-3-540-77806-6]

     irmgn.ir


	Cover
	Lecture Notes
in Control and Information Sciences 417
	Distributed Decision Making
and Control
	ISBN 9781447122647
	Preface
	Acknowledgements
	Contents
	Part I: Multi-Agent Control and Game Theory
	1 Primal and Dual Criteria for Robust Stability Applied to Large
Scale Systems
	Introduction
	Notation and Preliminaries

	Primal and Dual Stability Criteria
	Application to Large Scale Interconnected Systems
	Examples
	Spectral Characterization of Interconnections
	Aggregate Bipartite Interconnections
	Simple Symmetric Bipartite Interconnection
	General Interconnections

	Appendix
	References

	2 Optimal Controller Synthesis for a Decentralized Two-Player
Linear-Quadratic Regulator via Spectral Factorization
	Introduction
	Problem Formulation
	Main Results
	Analysis
	Spectral Factorization
	Finite Horizon Case
	Scalar Transfer Functions
	Matrix Transfer Functions

	Two-Player Solution
	Estimation Structure
	Examples
	A Standard Heuristic
	Decentralized Policy

	Conclusion
	References

	3 Decentralized Control with Communication Bandwidth Constraints
	Introduction
	Problem Set-Up
	Stabilizing Algorithm
	Observation
	Communication
	Control

	Robustness Analysis against Model Mismatch
	Observation
	Communication
	Control

	Multistation Case
	Example
	Summary
	References

	4 Monotone Games for Cognitive Radio Systems
	Introduction
	Nash Equilibrium Problems (NEPs)
	Connection to Variational Inequalities
	Solution Analysis of the NEP
	Monotonicity Conditions for the Vector Function F
	Distributed Algorithms for Nash Equilibria

	Generalized Nash Equilibrium Problems (GNEP)
	Connection to VIs: The Variational Solutions
	Distributed Algorithms for Variational Solutions

	Design of Cognitive Radio Systems Based on Game Theory
	References

	5 A Mechanism Design Approach to Dynamic Price-Based Control of
Multi-Agent Systems
	Introduction
	Motivation—Price-Based Control in Integrated Networks
	Multi-Area Load Frequency Control
	Dynamic Price-Based Control

	A Formal Model
	KKT Price-Based Control and Its Inadequacy
	Strategy-Proofness and Mechanism Design

	Back to Load Frequency Control and Dynamic Prices
	Discussion of Models of Rational Behavior and Future Work
	References

	6 Recursive Bargaining with Dynamic Accumulation
	Introduction
	The Model
	Algorithm to Identify the Solution
	Features of the Equilibrium
	Conclusions
	References


	Part II: Adaptation and Learning in Autonomous Systems
	7 Distributed Nonlinear Estimation for Diverse Sensor Devices
	Introduction
	Problem Formulation
	Notation
	Distributed Estimation
	Distributed Localization

	Consensus Algorithms
	Distributed Nonlinear Estimation
	Distributed Extended Kalman Filters
	Distributed Unscented Kalman Filters
	Distributed Particle Filters

	Distributed Computation of Particle Filters on GPUs
	Numerical Evaluation and Comparison
	The Mobile Agent Model
	Simulation Results
	Distributed Computation Particle Filters

	Conclusions
	References

	8 Performance Prediction in Uncertain Multi-Agent Systems Using
L1 Adaptation-Based Distributed Event-Triggering
	Introduction
	Problem Formulation
	$L_1$ Adaptive Control Structure

	Local Event Design
	Simulations
	Conclusions
	Proofs
	Proof of Lemma 8.1
	Proof of Lemma 8.2
	Proof of Theorem 8.1
	Proof of Corollary 8.1

	References

	9 Weight Determination by Manifold Regularization
	Introduction
	Supervised, Semi-Supervised and Unsupervised Learning
	Cross Validation and Regularization
	Generalization
	WDMR and the Nadaraya–Watson Smoother
	The Semi-Supervised Smoothness Assumption
	A Comparison between the Nadaraya-Watson Smoother andWDMR Using the KNN Kernel

	Related Approaches
	Examples
	Example 1—Functional Magnetic Resonance Imaging
	Example 2—Climate Reconstruction

	Conclusion
	Appendix—Kernels
	The KNN Kernel
	The Squared Exponential Kernel
	The LLE Kernel

	References

	10 Dynamic Coverage and Clustering: A Maximum Entropy Approach
	Introduction
	Dynamic versus Static Clustering
	Problem Formulation
	The Static Resource Allocation Approach
	The Deterministic Annealing Algorithm: Clustering in the 
Static Setting
	Properties of the DA Algorithm

	The Dynamic Maximum Entropy Framework
	The Free Energy Term
	Control Design: Tracking Cluster Centers
	Cluster Evaluation

	Scalability of the DME Algorithm
	Incorporating Scalability into the Cost Function

	Simulations
	The Basic Algorithm
	Natural Cluster Identification and Tracking

	Ongoing 
Work and Conclusions
	General Extensions of the Coverage Problem
	Estimating Data Dynamics
	Robustness to Modeling Uncertainties
	Conclusions

	References

	11 Transverse Linearization for Underactuated Nonholonomic
Mechanical Systems with Application to Orbital Stabilization
	Introduction
	Class of Systems and Problem Formulation
	Dynamics of Underactuated Nonholonomic Systems
	Target Periodic Motion via Virtual Holonomic Constraints
	Problem Formulation

	Transverse Linearization with a Preliminary Reduction
	Reduced-Order Dynamics

	Computation of a Transverse Linearization without a 
Preliminary Reduction of Order
	Orbital Stability and Stabilization
	Analysis of Orbital Stability
	Orbital Stabilization

	Example—Steering of a Knife-Edge System without 
Pushing
	Equations of Motion
	Target Periodic Solution
	Orbital Stabilization

	Conclusion
	References


	Part III: Distributed Model Predictive Control and Supply Chains
	12 A Distributed NMPC Scheme without Stabilizing Terminal
Constraints
	Introduction
	Problem Set-Up and Preliminaries
	The Scheme of Richards and How
	Stability of NMPC without Stabilizing Terminal Constraints
	Stability of Distributed NMPC without Stabilizing Terminal 
Constraints
	An Example
	Conclusion and Future Work
	Appendix
	References

	13 A Set-Theoretic Method for Verifying Feasibility of a Fast Explicit
Nonlinear Model Predictive Controller
	Introduction
	Nonlinear Model Predictive Control
	Multiscale Function Approximation
	Reachability
	Interval Arithmetic
	Zonotopes
	Splitting the Starting Set

	Capture Basin
	Approximate Explicit NMPC

	Numerical Example
	Conclusion
	Appendix
	References

	14 Towards Parallel Implementation of Hybrid MPC—A Survey and
Directions for Future Research
	Introduction
	Hybrid MPC
	Model Predictive Control
	Modeling Frameworks for Hybrid Systems

	Optimization methods
	Quadratic Programming
	Mixed Integer Programming
	Multi-Parametric Programming
	Other Methods

	Parallel implementation
	Parallel Implementations at High Level
	Parallel Implementations at Intermediate Level
	Parallel Implementations at Low Level

	Conclusion
	Future Research

	Appendix
	References

	15 Hierarchical Model Predictive Control for Plug-and-Play Resource Distribution
	Introduction
	Problem Formulation

	Proposed Architecture
	Stability, Complexity and Performance Analysis
	Stability
	Complexity
	Performance

	Simulation Example
	Performance Study
	Complexity Study

	Discussion
	References

	16 Hierarchical Model-Based Control for Automated Baggage
Handling Systems
	Introduction
	System Description and Original Model
	Control Objective
	Control Methods
	Centralized MPC
	Distributed MPC
	Hierarchical MPC

	Simulation Results
	Discussion

	Summary
	References

	17 Stability with Uniform Bounds for On-line Dial-a-Ride Problems
under Reasonable Load
	Introduction
	Formal Problem Statement
	Known On-line Algorithms
	Known Performance Guarantees
	Outline of New Contributions
	Reasonable Load in Detail
	Strong Stability
	Bounds for the Flow Times of IGNORE
	Bounds for the Flow Times of SMARTSTART
	An Example with Unbounded Flow Times for REPLAN
	An Example with Unbounded Flow Times for 
AVGFLOWREPLAN
	Combining the Best of two Ideas: DELTAREPLAN
	Conclusion
	References


	Author Index
	Subject Index

